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IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.
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Preface

These proceedings record the papers presented at the Workshop on
Architecture Description Languages held in the city of Toulouse in the
south of France.

The aim of an ADL (Architecture Description Language) is to formally
describe software and hardware architectures. Usually, an ADL describes
components, their interfaces, their structures, their interactions (structure
of data flow and control flow) and the mappings to hardware systems. A
major goal of such descriptions is to allow analysis with respect to several
aspects like timing, safety, reliability, ... This workshop has provided a
forum for practitioners and researchers to discuss recent development
around ADLs. A feature of this workshop has been to brought different
communities, from e.g., avionics and space embedded systems,
automotive embedded systems, distributed systems, to confront their
approaches, to discuss their emerging standards, and to share their
respective knowledge.

Toulouse and Brest, September 2004

Pierre Dissaux, Mamoun Filali Amine, Pierre Michel, Frangois Vernadat
Editors
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Architecture Description Languages

An Overview of the SAE Architecture Analysis &
Design Language (AADL) Standard: A Basis for
Model-Based Architecture-Driven Embedded
Systems Engineering

Peter H. Feiler1, Bruce Lewis2, Steve Vestal3 and Ed Colbert4

'Software Engineering Institute, USA, phffoselcmu.edu
2 US Army AMCOM, USA, bruce. lewis(a)sed. redstone. army, mil
^Honeywell Laboratories. USA. Steve.Vestal@honeywell.com
4Absolute Software, USA, colbert(a).abssw.com

www.aadl.info email: info@aadlinfo

Abstract: Architecture Description Languages provide significant opportunity for the
incorporation of formal methods and engineering models into the analysis of
software and system architectures. A standard is being developed for
embedded real-time safety critical systems which will support the use of
various formal approaches to analyze the impact of the composition of systems
from hardware and software and which will allow the generation of system
glue code with the performance qualities predicted. The SAE AADL standard
(International Society for Automotive Engineers (SAE) Architecture Analysis
& Design Language) is based on the MetaH language developed under
DARPA and US Army funding and on the model driven architectural based
approach demonstrated with this technology over the last 12 years. The SAE
AADL standard is aimed at supporting avionics, space, automotive, robotics
and other real-time concurrent processing domains including safety critical
applications.

Keywords: Architecture Analysis & Design Language; AADL; architecture description
language; computer architecture; computer modeling; computer analysis;
embedded systems; model based development; SAE; software architecture;
system architecture.
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1. INTRODUCTION

The International Society for Automotive Engineers (SAE) Architecture
Analysis & Design Language (AADL) is a textual and graphical language
used to design and analyze the software and hardware architecture of real-
time systems and their performance-critical characteristics. It is aimed at
supporting the avionics, aerospace, and automotive industry. The language is
used to describe the structure of such systems as an assembly of software
components mapped onto an execution platform. The language can describe
functional interfaces to components (such as data inputs and outputs) and
performance-critical aspects of components (such as timing). The language
can describe how components internet, such as how data inputs and outputs
are connected, how and when components are executed, and how application
software components are allocated to execution platform components. The
language can also describe the dynamic behavior of the runtime architecture
by supporting the modeling concept of operational modes and mode
transitions. The language is designed to be extensible to accommodate
analyses of additional runtime architectures that the core language does not
completely support. Extensions can take the form of new properties and
analysis specific notations that can be associated with components.

The AADL was developed under the auspices of the International Society for
Automotive Engineers (SAE). The AADL is developed for embedded
systems that have challenging resource (size, weight, power) constraints, that
have challenging and strict real-time response requirements that must tolerate
faults, that have specialized input/output hardware, and that must be certified
to,high levels of assurance. Intended fields of application are avionics
systems, flight management, engine and power train control systems, certain
medical devices, industrial process control equipment, and space applications.
The AADL addresses system of systems architectures, supporting integration
of embedded systems into higher level systems.

The language can describe important performance-critical aspects such as
timing requirements, fault and error behaviors, time and space partitioning,
and safety and certification properties. Such a description allows a system
designer to perform analyses of the composed components and systems such
as system schedulability, sizing analysis, and safety analysis. From these
analyses, the designer can evaluate architectural tradeoffs and changes. Since
the AADL supports multiple and extensible analysis approaches, it provides
the ability to analyze the cross cutting impacts of change in the architecture in
one specification using multiple analysis tools. The AADL specification
language has been designed to be further used with proper tool support to
generate the code needed to integrate the system components and build a
system executive. Since the models and the architecture specification drive
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the design and implementation, they can be maintained to permit model
driven architecture based changes throughout the system lifecycle.

2. Background

The AADL is based on experiences in the use of DARPA funded ADL
efforts, in particular MetaH developed by Honeywell []. A number of
organizations have used MetaH in prototypical system developments,
including Boeing, US Army, and the SEI. The case study of a pilot
application of the MetaH technology by the U.S. Army AMCOM SED
laboratory to missile guidance systems produced some insights into the
potential cost savings of an architecture-driven approach. An existing missile
guidance system, implemented in Jovial, was reengineered to run on a new
hardware platform and to fit into generic missile reference architecture []. As
part of the reengineering effort the system was modularized and translated
into Ada95. The task architecture consisting of 12-16 concurrent tasks was
represented as a MetaH model and the implementation generated
automatically from the MetaH model and the Ada95 coded application
components. The resulting system consisted of 12,000 source lines of
application component code, 3000 lines of MetaH executive generated from
the MetaH model, and 3000 lines of code representing MetaH kernel services.
The engineers doing the reengineering work made a conservative estimate of
effort required to reengineer the system into a pure Ada95 implementation
and validated the estimate with the prime contractor who implemented the
missile. The cost savings of 40% (prime estimated 66%) was obtained for
reengineering to a different language and platform, then the time critical
software was ported to multiple processor/OS/compiler platforms at a cost
savings of 90% per port.
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AMCOM Effort Saved Using MetaH

Benefit of |
Model-Based I
Architectures v.

Re-target

MetaH demonstrated the practicality of using an Architecture Description
Language (ADL) as core modeling notation for providing analysis capabilities
of several performance-critical quality attribute dimensions such as
schedulability, dependability, and safety-critical concerns. The MetaH toolset
demonstrated the capability of not only supporting system analysis, but also
automatic generation of glue code in form of a system executive that performs
all task binding, dispatching, and inter-task communication with application
components as "plug-ins" into this infrastructure. This separation of concerns
allows application developers to focus on domain functionality, while a
software system architect can focus on achieving system-level performance-
critical quality attributes.
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Generated Partitioned Architecture
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Strong Partitioning Portability
• Timing Protection • Application Components
• OS Call Restrictions • Tailored Runtime Executive
• Memory Protection • Standard RTOS API

3, An Analyzable Software System Architecture Description
Notation

The AADL has been designed to be a basis for model-based analysis and
generation of embedded systems, i.e., embedded and system of systems
engineering driven by an architecture that is reflected in the models and
maintained throughout the system life cycle []. The notation has been
designed as an extensible core language with well defined semantics and both
a graphical and textual presentation. The core language supports modeling in
several architecture views [7] and addresses timing and performance analyses
through explicit modeling of application system and execution platform
components and their binding as well as precisely defined concurrency and
interaction semantics and timing/performance properties. The extension
mechanisms permit properties to be introduced that are specific to additional
architecture analyses in terms of other quality attributes such as reliability,
security, etc, as were demonstrated with MetaH, and new analysis
approaches. In this section we introduce to core language and in the next
section we discuss the extension capability.

The focus of the AADL is to model the software system architecture in terms
of an application system bound to an execution platform. The architecture is
modeled in terms of hierarchies of components, whose interaction is
represented by connections. Components have a component type that
represents its externally visible interface and other characteristics, i.e.,
represents a component specification, and one or more implementations. A
component implementation in the AADL may represent application source
text and may be decomposed into an interconnected set of subcomponents
that are instances of other component types and implementations.
Generalization of components is supported in that component types and
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implementations can be expressed as extensions of other component types
and implementations.

To support modeling of execution platforms four categories of components
have been introduced: processor as a virtual machine that schedules and
executes units of concurrent execution (threads) according to a specified
scheduling protocol and may support space partitioning through protected
address spaces; memory as a storage abstraction that can hold data and/or
code; bus as a connector abstraction between execution platform components,
and a device as an abstraction of an active component that an application
system can interact with and a processor executing software may require
access to via a bus. The execution platform components may represent
hardware components or abstract execution platform components, whose
implementations may represent virtual machines that are implemented in
terms of another execution platform, with the bindings finally resolving to
actual hardware. Each execution platform category has a number of
predefined properties such as thread and process swap time or scheduling
protocol for processors. The core AADL predefines such properties and an
initial set of acceptable property value that can be extended. For example,
new scheduling protocols can be introduced through a property extension
mechanism.

Application system modeling is supported through two groups of component
categories. The first group focuses on the runtime behavior of a system and
consists of: thread as basic unit of concurrent execution which can be
abstracted into thread groups; and process as unit of protected address space.
Threads are contained in processes and have one of a set of predefined
dispatch protocol property values or one introduced through the property
extension mechanism. Predefined dispatch protocols include periodic,
aperiodic, sporadic, and background. Threads have separate execution
entrypoints into their associated source text for initialization, nominal
execution, and recovery. In case of nominal execution server threads may
have multiple entrypoints defined as server subprogram entrypoints. The
process load, thread dispatch and scheduling semantics are defined using a
hybrid automaton notation.

The second group focuses on the source text of a system and consists of:
package as unit of source text; and data component as passive application
data. The package category allows the modeler to represent the source text
decomposition structure to a level of detail that is appropriate to the modeling
effort. The data component category supports representing data types and
class abstractions in the source text as necessary for architecture models. The
data type is used to type ports (see below), to specify subprogram parameter
types, and to type shared data component instances. The component type
extension mechanism can model type inheritance. Subprogram features (see
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below) in component types can represent class methods and accessors of data
component declared as sharable with a specified concurrency control
protocol. Required access to sharable data component instances is specified in
a requires subclause of a component type.

A final component category supports hierarchical composition and consists
of: system as a unit whose implementations can contain execution platform
components, application system components and other system instances.

The AADL supports modeling of three kinds of interactions between
components: directional flow of data and/or control through data, event, and
event data port connections; call/return interaction on subprogram
entrypoints; and through access to a shared data component (see data
component above).

Threads, processors, and devices, and their enclosing components (process
and system) have in ports and out ports declared Data ports communicate
unqueued state data, event ports communicate events that are raised in their
implementation, their associated source text, or actual hardware, and event
data ports represent queued data whose arrival can have event semantics.
Arrival of an event at a thread results in the dispatch of that thread - with
semantics defined via property values and hybrid automata for event arrival
while the thread is active. For data port connections data is communicated
upon execution completion (immediate connection with the effect of mid-
frame communication for periodic threads) or upon thread deadline (delayed
connection with the effect of phase delay for periodic threads).

The data and event data ports appear to the application source text as data
variables - in ports as data variables where input is found when a thread is
dispatched, and out ports as variables into which output to be communicated
to other components is placed for transfer at well-defined points. In other
words, the application source text of a component has no knowledge of the
components it interacts with. The interaction connection is defined as part of
the AADL description, and appropriate runtime executive code can be
generated for thread dispatching and communication.

Subprogram entrypoints are defined in component types as provided and
required entrypoints. At the level of components representing source text
they represent procedures/functions that are called sequentially. At the level
of concurrent components they represent synchronous call/return between two
concurrency units (client subprogram calling a server subprogram).

Components can have modes. Modes represent alternative configurations of
the component implementation with only one mode being active at a time. At
the level of system and process a mode represents possibly overlapping (sub-)
sets of active threads and port connections, and alternative configurations of
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execution platform components, as well as alternative bindings of application
components to execution platform components. Mode change behavior is
specified as a state transition diagram whose states are the modes and the
transitions are triggered by events. Thus, the AADL can model dynamically
changing behavior of statically known thread and port communication
topologies bound to statically known execution platform topologies. Modes
can also be declared for sources text components. This permits mode-specific
property values to be declared in situations where the thread and connection
architecture does not change, but the thread internal behavior changes, e.g., it
has different worst-case execution times under different modes. Such more
detailed modeling of application systems allows for less conservative analysis
such as schedulability analysis.

The AADL has the following basic fault handling model. Runtime faults may
be handled within source text components through mechanisms that are part
of the source language runtime environment For faults not handled at that
level or propagated by the source text a thread is given an opportunity to
recover and continue with the next dispatch through a recovery entrypoint.
Thread unrecoverable errors are propagated as error events. The modeler of a
particular application system indicates through event connections where the
error event is propagated to, and mode change behavior descriptions indicate
actions taken in response to error events.

The AADL also supports other behavior specifications. It supports
specification of sequential execution paths within threads to represent control
flow within a thread in more detail. It supports specification of expected
invocation patterns on subprogram entrypoints that can be checked against
actual invocations. It supports specification of expected event port trigger
patterns for a port collection, i.e., a lower-level control flow protocol
represented by a collection of event port connections that externally is viewed
as a single event connection. It supports flow specification to support end-to-
end flow analysis of data and control.

In summary, the core AADL supports modeling of application systems and
execution platforms as interacting components with specific semantics and
bindings. Such systems are configurable in that components have multiple
implementations. Semantics defined as part of the component categories and
their predefined properties address timing and resource consumption as well
as interaction consistency in terms of matching port types and data
communicated through the ports. Behavior descriptions allow for model
checking of behaviors as well as mode(state)-specific analyses with less
conservative results. The core language does not provide properties and
semantics for all possible architecture analyses. Instead the AADL has been
made extensible both in terms of language notation and in terms of standard
annexes to accommodate further analyses. Annexes that will follow the initial
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core standard include language extensions such as ability to provide error
modeling for various dependability analysis, a UML profile, an XML
interchange format, and an Ada and C implementation annex. Additional
annexes are planned for more detailed component behavior modeling, ARINC
653 and POSIX implementation, constraints etc.

4. An Extensible Software System Architecture Description
Notation

The AADL has been made extensible in three respects. First, modelers can
define an extensible set of component specifications in form of component
types and implementations by making use of the extension mechanism
discussed in the previous section. Second, the language itself can be extended
through the ability to introduce new properties and extend the set of valid
property values for existing properties. Third, the AADL draft standard
includes its specification as a UML profile.

The AADL provides a library concept for organizing component type and
implementation declarations. It provides a name scope, thus, facilitates
independent development of major subsystems. Furthermore, the component
extension mechanism allows modelers to define components and
generalizations and specializations of other components.

The AADL currently supports the introduction of new properties extend the
set of valid values, and associate them with existing component categories,
ports, and connections through property extension sets. No specific notational
capability is provided are part of the AADL to describe the semantic meaning
of such properties, e.g., in terms of reliability characteristics. Instead,
providers of such extension sets can use notations such as the hybrid
automaton notation used in the definition of the core language, or resort to
English text or other more precise notations to describe the formal model
underlying a particular analysis to which the properties represent input.

In many cases it is desirable to express constraints on properties - such as a
constraint that the sum of mass property values of any subcomponent with a
mass does not exceed a certain maximum. We could consider extending the
AADL to explicitly support a constraint language. At this time constraints can
be introduced through properties with string values, whose meaning is only
understood by constraint analysis tools.

The AADL can be viewed as a modeling notation that can be completed with
notations tailored to the specific goals of a particular modeling view and
analysis. Such complementary notations can be introduced through string-
values properties as suggested above. Alternatively, additional modeling
views and semantics addressing certain analyses can be expressed in terms of
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2L UML sublanguage model. This approach is possible because we have
developed a UML profile of the AADL as part of the draft standard.

AADL/UML Strategy
To Be submitted to OMG for

Adoption
Extensible AADL Annexes

UML Working Groups

Dependability ; ( Performance

5. Status of the AADL as a Standard

The AADL standard has been in the works since 1999 with a balloted
requirements document in 2000. The standard was approved for publication
by the SAE in September of 2004. The specification of the AADL has been
aligned with the OMG UML standard to benefit from its large practitioner
base. The emerging UML2.0 standard is considered a partner in crime rather
than competition. The UML profile of the AADL, which after being approved
as an annex of the SAE standard, will be submitted for acceptance to the
OMG to be part of their standard suite.

The standard provides a means for the commercial production of tools with a
common AADL language interface. The UML profile, a specialization
providing AADL semantics, will allow the application of formal analysis and
code generation tools through a UML graphical specification, enabling the
use of currently available UML tools for specification. We also will provide
an XML specification for the AADL language now that the first version of
the language standard is completed These capabilities will provide an early
interface for developing new analysis approaches.

The AADL Standardizatbn Subcommittee also has a liaison relationship with
a French research consortium, COTRE, headed by Airbus. COTRE has
adopted the AADL for research into new tools, development and analysis
methods to support aviation system development requirements. The AADL
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plays a significant role in a future software and systems development
approach described by Airbus and COTRE in a recent paper[]. Other US and
European companies and agencies are evaluating and experimenting with
MetaH and the AADL.

Architecture based, model driven approaches are also beginning to appear in
the general software engineering domain. UML 2.0, the Model Driven
Architectures Initiative [], will provide a new layer to UML to directly
support a generalized model driven architecture based approach. It is
expected that multiple profiles for different domains will be defined as
specializations of UML 2.0. UML 2.0 is expected to be released soon. The
AADL UML profile will incorporate new architecture description capabilities
from UML 2.0 when it is released.

The Model Driven Architecture (MDA)
Initiative

• Based on the success of UML, the OMG has formulated a vision of a
method of software development based on the use of models

• Key characteristic of MDA:

- The focus and principal products of software development are
models rather than programs

- "The design is the implementation" (i.e. UML as both a modeling
and an implementation language)

• UML plays a crucial role in MDA

- Automatic code generation from UML models

- Executable UML models

- Requires a more precise definition of the semantics of UML
(UML 2.0)

Source: Bran Selic, Rational

The University of Southern California, Center for Software Engineering, lead
by Barry Boehm, has announced the development of Model-Based
Architecting and Software Engineering (MBASE) approach []. This approach
currently is being developed to be compatible with several Architecture
Description Languages, one being the AADL.

6. Summary

The AADL has been designed to specifically support the development of
large-scale systems through model-based architecture-driven software
systems engineering by providing an analyzable architecture description



14 Architecture Description Languages

language with well defined semantics. Its roots are in more than a decade's
research in architecture description languages with an emphasis on concepts
that address performance-critical embedded systems concerns, in particular
timing and performance. The standard has been made extensible to permit
inclusion of other performance-critical quality attribute concerns through
annexes, without bloating the core standard This permits new analyses to be
supported in the future as they emerge from research, e.g., in the area of
network security and intrusion management

The AADL in a Nutshell
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The SAE AADL provides an opportunity for the embedded real-time systems
research community to have a direct impact on the practitioner community.
As the AADL becomes the accepted means for modeling, analyzing, and
integrating systems based on architectural models, it can become a vehicle for
accelerated transition of research results in new analysis techniques by
demonstrating the use of research theories in the context of the AADL/UML.
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Abstract: This paper presents an approach to describe, deploy and manage software
architectures having dynamic functional and non-functional requirements. The
approach is centered on an ADL extended with high-level contracts, which are
used to specify the non-functional requirements associated to the architecture
of a given application. These contracts are also used to configure the
infrastructure required to enforce the non-functional requirements and, during
the running time, can be used to guide architecture adaptations, in order to
keep them valid in face of changes in the supporting environment. The
infrastructure required to manage the contracts follows an architectural pattern,
which can be directly mapped to specific components included in a supporting
reflective middleware. This allows designers to write a contract and to follow
standard recipes to insert the extra code required to its enforcement in the
supporting middleware.

Key words: QoS contracts ADL, architectural pattern, dynamic configuration

1. INTRODUCTION

The specification of QoS requirements and the implementation of the
corresponding management strategies for the resource providers associated
to the requirements are, generally, embedded in the application programming
in an ad-hoc manner, mixed with the application's specific code. This lack of
modularity makes evolution and code reuse difficult, also making difficult its
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verification and debugging. In this context, there is a growing interest for
handling quality of services (QoS) aspects in a specific abstraction level1'2) 3.
This approach would allow to single out the resources to be used and the
specific mechanisms of the native system that will be required by the
application, and, if possible, turn automatic the configuration and
management of those resources.

The traditional notion of QoS is bound to communication level
performance. However, a more recent view of QoS includes characteristics
associated to application's non-functional aspects, such as availability,
reliability, security, real-time, persistency, coordination and debugging
support. Such kind of aspect can be handled by reusable services provided
by middleware infrastructures or native systems support. This makes feasible
to design a software system based on its architectural description, which
includes the functional components, the interactions among those
components, and requirements regarding the behavior of system QoS
resources. To this end, it has to be provided a means to specify those
requirements in the context of the application's architecture description and,
also, there has to be available an environment that allows to deploy those
requirements over the system resources. In some applications, such
environment has to include mechanisms to monitor the resources and to
manage adaptations, according to the availability of those resources, in order
to guaranty that the QoS requirements are met during run-time.

Among the available techniques to specify QoS constraints, we highlight
the concept of contracts 4. A QoS contract establishes a formal relationship
between two parts that use or provide resources, where rights, obligations
and negotiation rules over the used resources are expressed. For instance, a
parallel computing application can have a QoS contract defining rules to
replicate processing resources, in order to guaranty a maximum execution
time constraint. According to the specified contract, the application can have
its components parallelization degree automatically controlled by the
supporting environment. Thus, when the time constraint is not being met by
the present configuration, the number of replicas can be raised, if there are
available processors 5.

In the previous context, this work presents the CR-RIO framework
{Contractual Reflective - Reconfigurable Interconnectable Objects)2'5

conceived to specify and support QoS contracts, associated to the
architectural components of an application. The approach helps to achieve
separation of concerns6 facilitating the reuse of modules that implement the
computation in other application systems, and allows the non-functional
requirements to be handled separately during the system design process. The
framework includes a contract description language, which allows the
definition of a specialized view of a given software architecture. The
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supporting infrastructure required to impose the contracts during run-time
follows an architectural pattern that can be implemented by a standard set of
components included in a middleware. The results of our investigation point
out that the code generation of these components can be automated, except
some explicit parts of code related to specific contract and resources classes.
In this way, contracts and their respective supporting infrastructures can be
reused in different applications.

In the rest of this paper, we initially describe the key elements of the
framework including the architecture description language with support to
QoS contracts. Next, we present the supporting infrastructure and, based on
an example we demonstrate the validity of the framework. Complementing
the article we present some related proposals and provide some conclusions.

2. BASIC FRAMEWORK

The CR-RIO framework integrates the software architecture paradigm,
which is centered in an architecture description language (ADL), with
concepts such as reflection and dynamic adaptation capability6, which are
generally provided in an isolated fashion in middleware proposals described
in the literature. This integration facilitates the achievement of separation of
concerns, software component reuse and dynamic adaptation capability of
applications. CR-RIO includes the following elements:

CBabel, an ADL used to describe the functional components of the
application and the interconnection topology of those components, which
follow the CR-RIO model. CBabel also caters for the description of non-
functional aspects, such as coordination, distribution, planned
reconfigurations and QoS. This set of features turns possible submitting
CBabel descriptions to formal verification procedures7. A CBabel
specification corresponds to a meta-description of an application that is
available in a repository and is used to deploy the architecture in a given
operating environment. In running time this meta-description provides the
information required to manage architectural adaptations.

An architecture-oriented component model, that allows programming
the software configuration of the application; (i) Modules, which encapsulate
the application's functional aspects; (ii) Connectors, used in the architecture
level to define relationships between modules; in the operation level
connectors mediate the interaction between modules; and (iii) Ports, which
identify access points through which modules and connectors provide or
require services; ports are fundamental to allow component linking with low
coupling.
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A simple software design methodology that encourages the designer to
follow a simple meta-level programming discipline, where functional aspects
are concentrated in modules (base level) and non-functional aspects are
encapsulated in connectors (meta-level). It is worth to point out that some
QoS requirements can be directly mapped into connectors, which are
equivalent to meta-level components, and can be configured in an
application's architecture. For example, the access to real-time
communication mechanisms, such as a real-time RMI8, could be
encapsulated into a connector and configured in different architectures.

The Configurator, a reflective element that provides services to
instantiate, execute and manage applications with distributed configurations.
The Configurator provides two APIs: configuration and architectural
reflection, through which these services are used, and a persistency
mechanism for the architecture meta-level description repository, where the
two APIs reflect their operations. The configuration API allows to
instantiate, link, stop and replace components of a running application. The
architectural reflection API allows querying the repository. A specialized
module of the application can consult the architecture's configuration and
decide to make changes under certain conditions, say, in face of resource
changes.

To specify non-functional aspects or quality of service (QoS) aspects
related to operational requirements such as processing capacity, fault
tolerance, real-time, information persistency, security or communication
CBabel employs the concept of architectural contract. In our approach, an
architectural contract is a description where two parts express their non-
functional requirements, through services and parameters, negotiation rules
and adaptation policies for different contexts. The CR-RIO framework
provides the required infrastructure to impose and manage the contracts
during run-time. Regarding QoS aspects we propose an architectural pattern
that simplifies the design and coding of specific components of the
infrastructure, consistently establishing the relationship between the
Configurator and the QoS contract supporting entities.

3. THE QOS ARCHITECTURAL PATTERN

In our proposal a functional service of an application is considered a
specialized activity, defined by a set of architectural components and theirs
interconnection topologies; with requirements that generally do not admit
negotiation1. Non-functional services are defined by restrictions to specific
non-functional activities of an application, and can admit some negotiation
including the used resources. A contract regulating non-function aspects can
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describe, at design time, the use of shared resources the application will
make and acceptable variations regarding the availability of these resources.
The contract will be imposed at run-time by an infrastructure composed by a
set of components that implement the semantics of the contract.

3.1 The QoS Contract Language

Our proposal incorporates concepts from the QML (QoS Markup
Language)4, which were reformulated for the context of software
architecture descriptions2. A QoS contract includes the following elements:

QoS Categories are related to specific non-functional aspects and
described separately from the components. For example, if processing and
communication performance characteristics are critical to an application,
associated categories, Processing and Transport, could be described as in
Figure 1.

01 QoScategory Processing {
02 utilization: decreasing numeric %;
03 clockFrequency: increasing numeric MHz;
04 priority: increasing numeric; }
05 QoScategory Transport {
0 6 delay: decreasing numeric ms;
07 bandwidth: increasing numeric Mbps; }

Figure 1. Processing and Transport QoS Categories

The Processing category (lines 1-5) represent a processing resource
where the utilization property is the used percentage of the total CPU time
(low values are preferred - decreasing), the clockFrequency property
represents the processor's operating frequency (high values are preferred -
increasing) and priority represents a priority for its utilization. The Transport
category (lines 5-7) represents the information associated to transport
resources used by clients and servers. The bandwidth property represents the
available bandwidth for the client-server connection and the delay property
represents the transmission delay of one bit between a client and the server.
The use of those categories, and of the other elements of the language
described next, is presented in Section 4.

A QoS profile quantifies the properties of a QoS Category. This
quantification restricts each property according to its description, working as
an instance of acceptable values for a given QoS Category. A component, or
a part of an architecture, can define QoS profiles in order to constrain its
operational context.

A set of services can be defined in a contract. In a service, QoS
constraints that have to be applied in the architectural level are described,
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and can be associated to either (i) the application's components or (ii) the
interaction mechanism used by these components. In that way, a service is
differentiated from others by the desired/tolerated QoS levels required by the
application, in a given operational context. A QoS constraint can be defined
by associating a specific value of a property to an architecture declaration or
associating a QoS profile to that declaration.

A negotiation clause describes a negotiation policy and acceptable
operational contexts for the services described in a contract. As a default
policy the clause establishes a preferred order for the utilization of the
services. Initially the preferable service is used. According to the described
in the clause, when a preferable service cannot be maintained anymore, the
QoS supporting infrastructure tries to deploy a service less preferable,
following the described order. The supporting infrastructure can deploy a
more preferable service again if the necessary resources are again available.

3.2 Support Architecture

CBabel described architectures and QoS contracts are stored as meta-
level information. Based on this information a set of middleware
components (see Figure 4) composing a well-defined architectural pattern2 is
used to instantiate the application and to manage the contracts.

The Global Contract Manager (GCM) interprets a contract description
and extracts its service negotiation state machine. When a negotiation is
initiated the GCM identifies which service will be negotiated first and sends
the configuration descriptions, related to each participating node, and the
associated QoS profiles to the Local Contract Managers (LCM). Each
LCM is responsible for interpreting the local configuration and activating a
Contractor to perform actions such as resources reservation and monitoring
requests. If the GCM receives a positive confirmation from all LCM
involved, the service can be attended and the application can be instantiate
with the required quality. If not, a new negotiation is attempted in order to
deploy the next possible service. If all services in the negotiation clause are
tried with no success, an out-of-service state is reached and a contract
violation message is issued to the application level. The GCM can also
initiate a new negotiation when it receives a notification informing that a
preferred service became available again.

The Contractor has several responsibilities: (a) to translate the
properties defined by the QoS profiles into services of the support system
and convey the request of those services (with adequate parameters) to the
QoS Agents; (b) when required, to map each defined interaction scheme
(link) into a connector able to match the required QoS for the actual
interaction, and (c) to receive out-of-spec notifications from the QoS Agents.



Architecture Description Languages 25

The information contained in a notification is compared against the profile
and, depending on its internal programming the Contractor can try to make
(local) adjustments to the resource that provides the service. For instance, the
priority of a streamer could be raised in order to maintain a given frame
generation rate. In a case where this is not possible an out-of-profile
notification is sent to the LCM.

A QoS Agent wraps the access to system level mechanisms, providing
adequate interfaces to perform resource requests, initializes local system
services and monitors the actual values of the required properties. According
to the thresholds to be monitored, registered by the Contractor, a QoS Agent
can issue an out-of-spec notification indicating that a resource is not
available or does not meet the specification defined in the profile.

4. EXAMPLE

During our research we developed some prototype examples to evaluate
and refine the framework. A virtual terminal in a mobile machine was used
to evaluate security and communication aspects in the context of a mobile
network9. Specifically, a static contract was used to specify security protocol
options {telnet or ssh, and cipher types) and a dynamic contract was used to
specify communication channels that can be dynamically reconfigured
(reconfiguration can be triggered by changes in available set of channels); in
this example it was also demonstrated the composition of both contracts,
which was immediately achieved joining theirs negotiation clauses. We
developed in 5 the application with real-time requirements, mentioned in the
introduction, an application with fault tolerance requirements, and the video
on demand application to be presented in the next subsections.

4.1 Video on Demand (VoD)

The scenario of the application is comprised by a server, which stores a
collection of video files in the MPEG-2 format, and by clients that connect
themselves to the server and initialize a flow to receive and display a
selected video. Each client can freeze or resume the video exhibition, in the
same way it would be done if the video were locally stored. It is assumed
that the clients can run on different platforms, from portable devices to
workstations, in which the availability of resources such as CPU capacity
and bandwidth can vary. In this context it is necessary to adapt the resources
or the application's architecture configuration, depending on the specific
operational environment, in order to have the video being exhibited with the
expected quality.
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The basic architecture of the example should fit two types of client: (i)
high processing availability, with high-speed access to the server and (ii)
medium processing availability, with dial-up modem access to the server. In
principle, clients of type (i) have enough processing and communication
resources to exhibit the video in the original MPEG-2 format. Clients of type
(ii), with limited resources, can only exhibit the video in and alternative
format, say H.261.

01 module Client_Server {
02 port provide, request;
03 module Client { out port request; } player;
04 module Server { in port provide; } server;
05 instantiate server at serverHost;
0 6 instantiate player;
07 link player.request to server.provide;
08 } vod;
0 9 start vod;

Figure 2. VoD application Architecture Description

Figure 2 presents the CBabel description of the application's architecture,
composed by a client {player - line 3) and a server {server - line 4), and their
connection topology; communication is made effective through the player's
request port and the server's provide port (lines 5-7). Note that this
interconnection could be detailed, by defining a specific connector to
mediate the client-server interaction, encapsulating the necessary
communication mechanisms. However, as the non-functional restrictions
include interaction aspects, the use of connectors in this architecture will be
defined explicitly in a contract.

4.2 QoS Contract

The QoS contract of this example considers that two services can be
used: (i) the exhibition of the video in the MPEG-2 format or (ii) in the
H.261 format, according to the availability of resources at the specific client
platform. To deploy any of these services in the client's node, the resources
to be handled are those related to the host's processing characteristics and to
the client-server communication channel properties.

The QoS categories for processing and transport, and their properties to
specify the VoD application contract, are those presented previously in
Figure 1. In the example it is considered that the client has to have a CPU
with a minimum operating frequency of 700 MHz and a maximum of 50%
of used CPU time to exhibit video in the MPEG-2 format. The exhibition of
video with the H.261 format will demand from the CPU, by its turn, only a
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minimum frequency of 266 MHz and a maximum CPU time usage of 70%.
In the example we are not considering static reservation of CPU time, in
order to illustrate a contract renegotiation activity. Please note that in a
dynamic context, even with CPU reservation, a contract could be invalidated
by another contract with higher priority.

In the example, the MPEG-2 requires a bandwidth greater than 1.5 Mbps
and a transport delay lower than 50 ms to sustain an acceptable video stream,
while videos in H.261 format require a minimum bandwidth of 56 Kbps and
can tolerate delays up to 200 ms. Other transport properties could be taken
into account in this case, such as the jitter or data loss rate; for the sake of
simplicity they were not included in the Transport QoS Category.

01 contract {
02 service {
03 instantiate player at clientHost with cpu_01;
04 link player to server by comTransport with network_01;
05 } MPEG_video;
0 6 service {
07 instantiate player at clientHost with cpu_02;
08 link player to server by H-261.comTransport
0 9 with network_02;
10 } H-2 61_video;
11 negotiation {
12 MPEG_video -> H-2 61_video;
13 H-2 61_video -> out_of_service;
14 }
15 } vod;
16 profile {
17 Processing.clockFrequency >= 700;
18 Processing.utilization <= 50/
19 } cpu_01;
20 profile {
21 Processing.clockFrequency >= 2 66;
22 Processing.utilization <= 70;
23 } cpu_02;
24 profile {
25 Transport.delay <= 50;
2 6 Transport.bandwidth >= 1.5;
27 } network_01;
28 profile {
29 Transport.delay <= 200;
30 Transport.bandwidth >= 0.056; / / 5 6 kbps
31 } network_02;

Figure 3. VoD application QoS Contract

Based on the previous requirements the application's contract can be
described as in Figure 3. The MPEG video service (lines 2-5) defines the
QoS constraints for the architecture parts that participate in the MPEG video
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exhibition. The creation of a player component instance (line 3) in a client
machine is associated to the cpu_01 processing QoS profile. The
interconnection of the player and server ports are bound to the networkjOl
QoS profile (lines 25-27), being the communication provided by a connector
that encapsulates the communication transport mechanism (line 4). The
mentioned profiles specify, respectively, the constraints to the Processing
and Transport QoS Categories properties, relevant to this contract. Thus, to
create the player instance, the clockFrequency of the node has to be at least
266 MHz and then the CPU utilization has to be less than 70%. The H-
261_video service description follows a similar procedure. The cpu_02 (lines
20-23) and network_02 (lines 28-31) profiles represent the requirements for
the H.261 video exhibition. Note that, for this service, the interaction of the
components is mediated by a connector that encapsulates the MPEG-2 to H-
261 conversion mechanism. Additionally to the MPEG-2 and H.261, other
formats could be supported by using specific decoders, encapsulated in
connectors; e.g., the bitmap format that can be exhibited on PDAs and cell-
phone video matrixes.

The negotiation clause of this contract (lines 11-14) defines the priority
order between the services. The MPEGvideo service has to be preferably
provided in relation to the H-261_video service. If there are no resources
available to attend any of these services, an out-of-service state is reached
and the application cannot run.

4.3 Mapping the contract into the architectural pattern

The implementation of the QoS contract of the example-application using
the proposed architectural pattern is depicted in Figure 4. Each participant
node has a running instance of the Local Contract Manager, the specific
Contractor for the VOD application and QoS Agents associated to the
resources to be controlled in each specific platform. The Configurator
(Section 2) and the Global Contract Manager can be instantiated in a node
dedicated to manage applications or in the same node were the application's
server is running. The H-261 connector only takes part of the configuration
when the H-261 video service is deployed. It can also be observed that the
comTransport connector has a distributed implementation.

The sequence diagram presented in Figure 5 depicts the interactions
between the CR-RIO components to establish the MPEG_video service to a
player running in a node, which is connected to the server through an
Ethernet network. When starting the procedure to load the application the
Configurator and the GCM are already running. As the first step, the GCM
retrieves the associated QoS contract; all further actions are guided by this
contract. Initially the GCM creates instances (createQ) of the LCM in the



Architecture Description Languages 29

nodes where the application components are to be instantiated. Next, it
selects a service to be used (in this case, the MPEG_video) and initializes a
negotiation activity, sending to the LCMs the information related to this
service, including the associated QoS profiles (cpu_01 and network_01).
Each LCM extracts from the received information the QoS characteristics
that have to be considered and instantiates {createQ) (a) the QoS Agents that
provide the interfaces (management and event generation) to the resources
used by the service, and (b) the application specific Contractor, that will
interpret the service information and will interact with the QoS Agents to
impose the desired properties.

Figure 4. Mapping the VoD application contract in the architectural pattern

In the client node, the LCM identifies the processing resources that have
to be managed (based on the instantiate ADL's primitive that creates an
instance of the player module - QoS contract, line 3). In the server node, the
local LCM identifies (based on the link ADL's primitive that interconnects
the player module to the server module - QoS contract, line 4) that it will be
responsible for the management of the transport resources (the adopted
semantics is to assign to the server side the responsibility for managing QoS
requirements that involves two peers). When the LCM instantiates a
Contractor it also sends to it the profiles that have to be attended. In the
sequence, the Contractor interacts with the QoS Agents to request resources
and to receive relevant events regarding the status of the resources. In this
example, the Processing QoS Agent verifies the operating frequency of the
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CPU and is responsible for monitoring the CPU load {utilization). Also,
observe that the client-server communication channel uses some kind of
resource reservation put in effect through the Transport QoS Agent.
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Figure 5. Establishing the MPEGvideo service

After the initial phase, if the required QoS profiles were imposed, a
Contractor notifies the success to its associated LCM that, by its turn,
forwards a corresponding notification to the GCM. In the example, if all
involved LCMs did return a positive confirmation, the GCM concludes that
the negotiation was successful and that the MPEGvideo service can be
established. The next step is to instantiate the application's functional
components in the context of the reserved resources and, then, to initialize its
execution. This step is performed by the Configurator (Section 2) based on
the Architecture Configurator design pattern10; see details in5. If during the
negotiation any Contractor has a resource demand denied, or if it verifies
that a QoS Agent notified an out of range value, an out-of-profile notification
is sent to the LCM that, by its turn, sends an out-of-service notification to the
GCM. In consequence the GCM selects the next service to be attempted, in
this case the H-261_video, and a new negotiation cycle begins.

In steady state, if a significant change in the monitored values is detected,
the QoS Agent notifies the registered Contractors invoking the updateQ
method. If the reported values do not violate the active QoS profiles, nothing
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has to be done. If there is a violation, the Contractor can try to locally
readapt the resource in order to keep the service; for instance, passing new
parameters to the QoS Agent. If it is not possible to readapt, the Contractor
sends an out-of-prqfile notification to the LCM and, in the sequence, another
service can be negotiated. To exemplify the situation let's suppose that while
the MPEGvideo is operational, new processes are admitted to the client's
node, diminishing the available processing power to the player. This would
be captured by the Processing QoS Agent observing the increase of the
value of the utilization property. Let's consider that the measured value
overcomes the limit of 50% defined by the cpu_01 profile, but is still lower
than the 70% limit defined by the cpu_02 profile.

The Processing QoS Agent notifies the Contractor triggering a new
negotiation. The client's Contractor verifies that the property is out of the
cpuOl profile specification and sends the respective LCM an out-of-profile
notification. This information is then propagated to the GCM through an out-
of-service notification. Then the GCM selects the H-261_video to be
negotiated and sends the respective information as parameters invoking to
the involved LCMs. Each LCM discontinues the current service and the
procedures to impose the new service, bound by the cpu_02 and network_02
QoS profiles are performed (similarly as in the case to deploy the initial
service). Several optimizations are feasible. For instance, when a Contractor
sends an out-of-profile notification this could be followed by the set of QoS
profiles that could be attended at that moment. Receiving this composed
information the GCM could select the next service to be negotiated,
immediately discarding the services with associated profiles out of the set.
We are investigating the use of an event support service, with composition
capability, to implement this optimization. A second optimization could be
applied when a set of services is restricted to a given node. In this case the
LCM of the given node could receive the information of all services and
profiles related to the set and manage them locally.

A prototype of the VoD application is presented in5. The Java Media
Framework was used to implement the functional modules. Some classes
related to the video flow were encapsulated in connectors, e.g., those
implementing RTP and the H.261 codec. The QoS architectural pattern was
implemented as a set of classes integrated to the CR-RIO framework.

It was possible to identify that the implementations of the GCM and the
LCM, directly related the application contract are reusable. The behavior of
these elements is parameterized by the QoS contract of the specific
application; in this level the manipulated information are symbolic. Each
QoS Agent has dependencies related to the resource being managed.
However, once implemented, an Agent can be reused in other applications
that have operational requirements dependent on the same kind of resource.
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The Contractor, by its turn, represents the hot spot of the pattern. Its
implementation is dependent on the services and profiles to be imposed, and
also dependent on the own resources to be managed via QoS Agents. The
Contractor can also contain the code implementing specific policies to
perform local adaptations, as discussed in the end of the last section.

5. RELATED WORKS

The reflective middleware approach11 allows for the provided services to
be configured to comply with the non-functional properties of the
applications. However, the approach does not provide clear abstractions and
mechanisms to help the use of such features in the design of the architectural
level of an application. This leads to the middleware services being used in
an ad hoc fashion, usually through pieces of code intertwined to the
application's program. The Quality Connector pattern provides a
methodology for the re-allocation of resources in response to context
changes in the execution environment12. However, it requires access to the
source code of every application and/or to the infrastructure's components in
order to instrument them. Our approach, that includes configuration-
programming mechanisms, is more transparent regarding the access to the
source code of the application. The Quality Objects (QuO)3 provides a
framework for the development of distributed applications with QoS
requirements, based on CORBA. In QuO, the specification of such
requirements is associated to method invocations, through a contract
description language, allowing only adaptations at this level. Our proposal
considers services with differentiated quality in diverse levels, from the
interface (or connection) level, in which services are encapsulated into
connectors (similar to the QuO approach), to the architectural level, in which
the service provision can involve the reconfiguration of the application's
topology. The proposal described in13 includes basic mechanisms to collect
status information associated to non-functional services. It also suggests an
approach to manage non-functional requirements in the architectural level, in
a way quite similar to ours. CR-RIO complements this proposal providing an
explicit methodology based on contracts and proposing extra mechanisms to
deploy and manage these contracts. More details are available in5.

6. CONCLUSION

We presented a unified approach to specify, deploy and manage
applications having non-functional requirements. The approach helps to
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achieve separation of concerns and software reuse by allowing non-
functional aspects of an application, such as QoS requirements, to be
specified separately using high-level contracts expressed in an extended
ADL. Being centered on an ADL-based configuration middleware the
framework inherits all its well-known benefits, among them the capability of
reconfiguration, which facilitates to execute dynamic architectural
adaptations on behalf of a contract. Part of the coding, related to a non-
functional requirement, can be encapsulated in connectors, which can be
(re)configured during running time in order to cater for the impositions
defined by the associated contract. The infrastructure required to enforce the
contracts follows an architectural pattern that is implemented by a standard
set of components of the middleware. In this pattern, each component
performs a well-defined role in the support of the contract. We think that
making these structures explicit and available to designers, the task of
mapping architecture-level defined contracts to implementations can be
simplified. The approach has been evaluated through several case studies
that showed that the code of these supporting components can be
automatically generated, excepting some localized pieces related to
specificities of the particular QoS requirement under consideration.
However, we should notice that the treatment of low-level details always has
to be considered in any QoS aware application. Our approach can help to
identify the intervening hot spots and to make adaptations more rapidly.

In our proposal, the composition of contracts can be specified combining
in a unique clause the negotiation clauses of the involved contracts9.
Contracts regarding different non-functional aspects (in the same or in
different applications) can be orthogonal and cause no interference with each
other; in this case, composing those contracts is immediate. In the general
case, the composition process can lead to conflicts on the use of shared
scarce resources. Conflicts can be handled applying a suitable decision
policy to the set of involved contracts; already assigned resources could then
be retaken in order to satisfy the preferred contracts.

Currently, we are investigating the specification of individual contracts
for clients and servers14. This intends to allow each client to specify what it
requires and each server to specify what it is committed to provide. This
capability would permit to make decisions regarded to a component
instantiation taking into account the availability of resources at its
instantiation time. Besides providing the flexibility required to the support of
dynamic architectures, this would allow managing conflicts through lower
granularity interventions. We are also working towards giving a formal
semantics to the QoS contracts, using Rewriting Logic, in the same line as
presented in7 for the CBabel ADL. With the results of that experience we
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plan to produce a set of guide-lines to allow the formal verification of the
QoS contracts in the architectural level.
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HIERARCHICAL COMPOSITION AND
ABSTRACTION IN ARCHITECTURE MODELS
Pam Binns and Steve Vestal
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Abstract We present a compositional approach to generate linear hybrid automata timing
models, and Markovian stochastic automata safety models, from an architecture
specification. Formal models declared for components are composed to form
an overall model for the system, where the composition rules depend on the
semantics of the architecture specification. We further allow abstract models to
be specified for a subsystem of components, where the abstract model may be
substituted for the concrete model of that subsystem when composing the overall
system model. We assume both abstract and concrete models are given, we
address the problem of verifying that the abstractions yield safe if approximate
results. An abstract model may be viewed as a formal subsystem specification
used for both conformance checking and improving the tractability of system
analysis.

Keywords: architecture description language, formal specification, hybrid automata, stochas-
tic processes, schedulability modeling, reliability modeling, system safety

1. Introduction
Given a specification for the architecture of an embedded computer system,

we want to generate and analyze formal models of system behavior. In this
paper we discuss the generation and analysis of timing and safety models from
specifications written in the SAE standard Architecture Analysis and Design
Language (AADL) and its original research basis, MetaH[AADL 2004, MetaH
2000].

An architecture is often informally described as an assembly of connected
components. Overall system behavior is determined by the interactions be-
tween components according to the way they are connected, which is to say
system behavior is defined as a composition of the behaviors of its components.
We will associate formal models with individual components in a specification.
The formal models for a complete system are defined as compositions of the

*This work was supported by the US Air Force Office of Scientific Research under contract number F49620-
97-C-0008.
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individual component models. In this paper, we use a type of hybrid automaton
to specify real-time component behaviors, and a type of stochastic automaton
to specify component fault and error behaviors.

Architectures are specified hierarchically. Every component may have an
internal implementation that may itself be specified as a set of connected sub-
components. Given a component that has an internal architecture, a formal
model for that component can be generated by composing the models for its
subcomponents. We call this the concrete model for that component. We may
also directly associate an abstract model with a component that is intended to
be a safe approximation for the concrete model. When generating a system
model from an architecture specification, we thus have a choice for each com-
ponent whether to use its concrete model or its abstract model. A different
choice can be made for different components at different levels of the design
hierarchy, so that a fairly large set of mixed-fidelity models is possible. Hi-
erarchical abstraction can both improve understandability and enable tractable
analysis for large and complex specifications.

We assume both concrete and abstract models are given, e.g. hand-developed.
Our focus is on verifying that analyses performed when abstract subsystem
models are substituted for concrete subsystem models are safe in some sense
with respect to analyses of the fully detailed concrete models. In the case of
our timing models, we show how to verify that classical periodic tasks are con-
servative approximations for hybrid automata used in the AADL standard to
define thread semantics, or hybrid automata that model reusable middleware.
In the case of our safety models, we explore the relationship between abstract
and concrete stochastic automata models. We expect the effort required to
develop pairs of abstract and concrete models to be justified by high degrees
of reuse; and that many pairs of abstract and concrete models will be based
on common and easily modified design patterns. An abstract model may be
viewed as a formal specification that is also usable to improve the tractability
of analysis.

2. Related Work
We borrow one of the fundamental ideas of process algebra[Milner 1989]:

show that a large and complicated subsystem model can be replaced by a
smaller and simpler subsystem model when performing overall system anal-
ysis. We permit the smaller simpler model to be an approximate abstraction
rather than requiring some notion of equivalence. We deal with hybrid and
stochastic automata rather than purely discrete models. We use automata rather
than programming language models [Cousot 1977].

CHARON and Hybrid I/O Automata (HIOA) exhibit many of these con-
cepts[Alur et. al. 2001, Lynch et. al. 2003]. The notion of abstraction used
in this paper also involves containment of reachable states or traces. We allow
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looser definitions than the CHARON notion of refinement or the HIOA notion
of implementation, for example we allow the sets of abstract and concrete vari-
ables to differ. We allow fairly arbitrary abstractions to be specified and focus
on verifying that they are adequate for the purpose at hand. CHARON and
HIOA use more traditional ways to compose automata based on shared vari-
ables and/or shared events, whereas we use a scheduler function to compose
models of real-time tasks that interact by contending for shared processors.

Markov (and more general stochastic) processes are well known to exhibit
the state space explosion when trying to solve large models of complex sys-
tems. This served to motivate the desire to use more computationally tractable
abstractions. Early work established necessary and sufficient conditions for
when abstractions of Markov chains were again Markov [Kemeny and Snell
1976]. Considerable effort has been spent in developing efficient algorithms
to find tractable Markov abstractions {e.g. [Derisavi et al. 2003a]). Other re-
searchers have sought abstractions for which the solution is exact when the
concrete model is a semi-Markov processes, which is more expressive than a
Markov process [Bradley et al. 2003]. When a Markov process has no tractable
abstraction that is again Markov, techniques for finding approximate abstrac-
tions might be useful [Lefebvre 2002].

From a computer science perspective, process specifications typically be-
gin with models of concurrent automata, to which various stochastic semantics
have been applied. Considerable work has gone into linking conditions for
when variants of stochastic automata are analyzable as Markov chains {e.g
[Brinksma and Hermanns 2001, Desharnais et al. 2003]). Software tools have
been developed to support specification of numerous modeling formalisms and
abstractions coupled with a collection of optimized solution techniques for
evaluating them {e.g. [Derisavi et al. 2003b]).

3. Timing Models
Classical real-time scheduling theory deals with the scheduling and analysis

of repetitively dispatched tasks [Liu and Deitel 2000]. The time between dis-
patches is fixed (periodic tasks) or has a lower bound (sporadic tasks). There is
an upper bound on the compute time at each dispatch (often called the worst-
case execution time). The theory provides algorithms for optimal (in some
sense) uni-processor scheduling and for tractable schedulability analysis of
large sets of tasks. However, classical real-time scheduling theory deals with
only very restricted forms of internal task behaviors or interactions between
tasks (beyond contention for a shared processor resource). For example, tasks
in an actual system may exist in a number of discrete states, e.g. halted, initial-
izing, suspended, computing, recovering.

Hybrid automata can model more complex dynamical systems[Alur et. al.
1994]. A hybrid automaton is a classical finite state automaton plus a set of
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real-valued variables. The variable values may change continuously in a fixed
location (a fixed discrete state), and may change discontinuously (may be as-
signed) at discrete transitions between locations. The allowed transitions may
depend on the variable values (edge guards may be predicates over variables).
These additional behaviors are specified by annotating the edges and locations
of the classical finite state automaton with various kinds of constraints. In this
paper we limit our attention to linear hybrid automata, where constraints are
expressed using linear functions. A state of a hybrid automaton consists of a
location together with a real value for each variable. We use polyhedron to
refer to a set of possible real values for the variables (e.g. specified as a system
of linear inequalities), and use region to refer to a location plus a polyhedron.
Composition rules exist to define semantics for sets of concurrent hybrid au-
tomata.

assert t<200000

Abstract
Tailed

Recovering
3c=0,oT={0,l},6t=l

r<10000
Abstract

Computing

Figure 1. Concrete Hybrid Automata Model T for a MetaH Periodic Task

Certain AADL thread semantics are defined in the standard using a hybrid
automata notation [AADL 2004]. We have automatically generated linear hy-
brid automata models for the portions of the MetaH middleware that perform
preemptive scheduling and enforce time partitioning [Vestal 2000]. Figure 1
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shows a hybrid automata model T for a periodic task. This model was automat-
ically generated from the MetaH middleware code, i.e. it shows task behavior
actually implemented by the middleware (excluding stopping and restarting
at dynamic architecture reconfigurations). We use Sx as an abbreviation for
Sx/St. The choice for Sc — {0,1} is made as follows.

We do not use shared variables or shared edge labels (synchronized transi-
tions) to compose multiple automata. Instead, we use a scheduling function
that defines the rates at which compute times accumulate as a function of the
current set of task locations (e.g. as a function of which tasks are in ready
states)[Vestal 2000]. Let I = < In, l2j,... > be a location vector for a system
of automata, i.e. In is a location from automaton Ti, faj is a location from au-
tomaton T2, etc. A scheduler function < 6vi,6v2,... > = S(< lu^hj, ••• >)
(also written 8v = S(l)) defines the variable rate vector as a function of the
system location vector. In our example, the scheduler function always sets
5t = 1 for timers t, and sets Sci = 1 if task i is executing and 5ci = 0 if task i
is preempted for that system location (for that set of contending ready tasks).

Unfortunately, analyzing schedulability by model-checking systems of hy-
brid automata is not currently very tractable. We have done this for pairs of
different kinds of tasks during the MetaH middleware verification exercise, but
revolutionary advances in hybrid automata model-checking are needed to con-
sistently analyze even a dozen non-trivial concurrent task models. We instead
explore how to verify that a complex hybrid automaton task model (such as
one defined in the AADL standard) can be safely approximated by a classical
real-time task model for the purpose of schedulability analysis.

assert t'<200000

Computing ^ ^ ^ f Awaiting_Dispatch
dc'={0,l},dt'=l ) ( dc'=0,5t'=l

c'<100000 y . V _ t'<200000

Figure 2. Abstract Hybrid Automata Model T" for a MetaH Periodic Task

Figure 2 shows an abstract hybrid automaton specification T' for a periodic
task having a period of 200000 time units and a worst-case compute time of
100000 units. We assert this formally specifies a classical periodic real-time
task, slightly extended by the addition of a Failed state. We define a mapping
between this abstract automaton and the concrete automaton of Figure 1 as
follows.

We define a many-to-one mapping of concrete to abstract locations, V =
a(l) for abstract location V and concrete location /. Every initial concrete lo-
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cation must map to an initial abstract location. Our example mapping is il-
lustrated in Figure 1 using shaded ovals to represent the abstract locations to
which the concrete locations are mapped. We define the value of each abstract
variable as a linear function of the concrete variables, v[ — fi(vi,V2, .̂ .) for
each abstract variable v[ and concrete variables Vj (also written v1 = f(v)) .
For our example, tf = t and d = c + r. Each initial valuation for the concrete
variables must map to an initial valuation for the abstract variables.

Assume we are given a system of abstract tasks T{,..., T/,... having an ab-
stract scheduler function Svf = S'(V).- We can view this as an abstract specifi-
cation for scheduling a system of tasks. We can modify this system by replac-
ing some particular T[ with a concrete T{9 with suitable changes to the domain
and range of the scheduler function.

We constrain the modified scheduler function S obtained from the abstract
S' so that all concrete locations that map to the same abstract location are
equivalently scheduled, and concrete scheduler rates are consistent with ab-
stract scheduler rates. Assume that, due to the replacement of T/ by T{, abstract
variable v[ is removed from the range of S and concrete variables vn,... where
v\ = fi(vn,...) are added. For unreplaced abstract variables v'^ Sv'j = Sj(<
...,/',.•• >) = Sj(< ...,/,... >) whenever a{l) = V. For substituted vari-
ables, Sv'i = S-(< ...,/',... >) = 5fi(vn,...) mfaSvij = S{j(< ...,/,... >)
whenever a(l) = I'.

We assert that the original abstract system can be analyzed using a classical
schedulability analysis algorithm appropriate to the abstract scheduling func-
tion Sf. If the reachable regions of the modified system are contained in those
of the original abstract system (after applying the variable abstraction function)
for all feasibly scheduled abstract systems, we assert that the abstract system is
a safe approximation for the modified system for the purpose of schedulability
analysis.

To formalize the notion of containment in the presence of variable abstrac-
tion, let P'^ be the system of linear inequalities obtained from an abstract
P' by substituting for each abstract variable v[ its linear abstraction function
/i(^ij ^25 •••)• Onty concrete variables appear in P'-k We say that concrete P
is contained in abstract P' if P C P^

We verify by model-checking that a modified S derived as explained above
from a feasible abstract scheduler Sf will always feasibly schedule T{. First, for
our example pair of abstract and concrete models we restrict our attention to
schedulers that are functionally equivalent to the set of constant rate schedulers
5"(..., Computing^,...) > 1/2, i.e. an abstract scheduling function is feasible
for this example if it allocates at least 50% of the processor to T[ between its
release time and deadline while T( is in its compute state. Second, we construct
a specific S that satisfies the conditions above, one that sets 8c = 1/2 and 8r =
0 in all concrete states that map to the abstract computing, except Sr = 1/2
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d 5c = 0 in the recovering state. For our MetaH example, both abstract and
concrete scheduler functions are preemptive fixed priority schedulers. (Note
that, as one might expect, a number of concrete schedulers could be defined
that satisfy the above conditions on the relation between abstract and concrete
scheduler functions.)

Using these abstract and concrete scheduler functions, we applied a region
enumeration tool to both an abstract and a concrete task model. Then, for
each reachable concrete region (/, P) where I is a concrete location and P a
polyhedron in the concrete variable space, the tool verified that there was some
reachable abstract region (Z',P;) such that V = a(l) and P C P'K Note
this is a conservative containment test, sufficient but not necessary, because in
principle P might be contained in a union of abstract polyhedra but not in any
single abstract polyhedron.

The condition that S is indistinguishable from S1 for all concrete locations
that map to the same abstract location means the scheduling of a given task
model is the same regardless of whether it is being composed with abstract
or with concrete models. We can thus make this substitution for any arbitrary
subset of tasks to produce mixed-fidelity models that range from all abstract to
all concrete.

This worked for our example concrete MetaH task model by design, in the
sense that the task scheduling implementation was designed to present a clas-
sical real-time workload. This enabled accurate schedulability analysis for
implemented systems, at least to the degree we could verify the implementa-
tion satisfied the abstraction (subsequent hybrid system model generation and
checking revealed some implementation defects [Vestal 2000]). The advent of
hybrid automata methods (largely occuring after the original MetaH design)
and abstraction methods (such as those presented here) can hopefully enable
more rigorous and defect-free development in the future.

Abstraction methods such as that presented here might be used to produce
mixed-fidelity hybrid automata models that are more tractable to model-check.
Our earlier experience suggests that expanding only two or three out of a dozen
abstract tasks into their fully detailed concrete models might yield a tractably
analyzeable model[Vestal 2000]. This might be useful, for example, to verify
some complex interaction protocol between a pair of tasks.

Our use of model-checking to verify containment of concrete behavior within
abstract behavior required us to constrain the class of abstract and concrete
schedulers and the mapping between them. It would be useful to verify that
the abstraction is a safe approximation for the concrete for broad classes of ab-
stract and concrete schedulers and mappings. For example, it might be possible
to permit a (mapped) concrete scheduler rate to exceed the abstract rate under
certain circumstances. This might make it easier to deal with things like differ-
ent scheduling priorities for different concrete locations, or bounded blocking



42 Architecture Description Languages

times, which would be of significant practical utility. It might also be pos-
sible to prove more complex cases of containment using an explicit detailed
abstraction mapping between concrete and abstract invariants and edges (in-
cluding guards and assignments), rather than model-checking with constrained
scheduler functions.

4. Safety Models
We now revisit the same general problem addressed in the previous section,

but rather for safety models than for timing models. The AADL Error Mod-
eling Annex defines language features to specify stochastic models for fault,
error and failure behaviors in embedded computer architectures [AADL 2004].
A stochastic automaton approach is used[Brinksma and Hermanns 2001] for
specification. The rules for composing individual component stochastic au-
tomata depend on the specified architectural structure, i.e. depend on the pos-
sible error propagation paths between components that interface to or depend
on each other. Propagation modifiers can be specified to make propagation
conditional, which allows consensus and voting protocols to be modeled.

An error model for a system specified as a nested hierarchy of components
can be obtained by composing the error models for its subcomponents accord-
ing to the rules of the language. However, another option is made available:
the user can specify a subsystem error model that may optionally be substituted
as an abstraction for the concrete compositional model. Propagation modifiers
can also map one error into another. This makes it easier to compose legacy
models or models developed at different levels of abstraction. (Legality rules
are included in the annex to enable automatic verification of error model com-
patibility within an overall architecture specification, or identify places where
such mappings are needed.)

The remainder of this section is organized as follows. We introduce Markov
processes, the modeling language to which stochastic automata specifications
are translated before solving the system. We suggest rules to preserve safety
properties when going from concrete (larger) steady state Markov models to
abstract (smaller) steady state stochastic models. Abstractions of several steady
state Markov models are presented. Steady state analyses are computationally
much simpler to find than transient analyses.

We show that the transition rate assignment in the abstract model is uniquely
determined by the transition rates of the concrete model when the abstraction
is "lumpable". When the abstraction is not lumpable, rate assignments in an
abstract model need not be uniquely determined. We discuss selection criteria
for "reasonable" assignments from an engineering perspective when possibly
infinite (beyond a constant rescaling of all transition rates) assignments will
satisfy the constraints of the abstract model. For safety analyses, transient
solutions are generally required. We discuss conditions for preserving safety
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in transient models. We close with an illustration of how Markov chains are
composed at the (AADL) specification level.
4.1 Brief Markov Process Introduction

The reader is assumed to be familiar with Continuous Time Markov Chains
(CTMCs) at an introductory text level (e.g. [Hoel et. al. 1972]). We use stan-
dard notation for describing CTMCs, which unfortunately has some overlap
with hybrid systems notation. Hopefully the context will make clear the use.
The notation we use to specify and solve CTMCs is compactly defined in Ta-

Notation Description
A finite discrete set of systen states. Typically, 8 = {1, 2,..., m}.
Elements in 8. x, y G 8.
System state at time t>0. X(t) t8 for all t > 0.
Instantaneous rate of change from state x to y for x ^ y. The set {qxy} de-
scribes the infinitesimal generators of the CTMC. For x = y, qxx = —qx =
— ^2 s_, , qxy. In practice, qxy is known or must be approximated (e.g. the
failure rate of a component, perhaps given by a vendor specification).
The infinitesimal generator matrix. Denote (A)ij = q^.
The transition rate out of state x. For a CTMC, this means the probability that
a process in state x will remain in state x for a time greater than t is e~qxt. If x
is a death state (with no transitions leaving x), then qx = 0.
A diagonal matrix, with Dxx = ^ and D ^ = 0 for x ^ y.
The probability of transition from state x directly to state y given the system is
about to transition out of x ^ y. Qxy = qxy/qx for x ^ y.
The probability that X(t) = y given that X(0) = x. Or, the probability that a
process X in state x will be in state y after t time has elapsed.
The steady state distribution. That is TT = (7TI,7T2, ...,7rm), where TXX —
\imt-+ooP(X(t) = x). For a CTMC, TT satisfies TTA = 0. For a Discrete
Time MC (DTMC), TT satisfies TTQ = TT. Also require Yl'JLi ^J = *» t 0 f u l l v

constrain the model.

Table 1. Continuous Time Markov Chain (CTMC) Notation

ble 1. When considering limiting distributions, we assume there are no death
states and the limiting distribution does not depend on the initial distribution.
That is, we assume the CTMC is ergodic and regular.
4.2 Examples of Concrete Continuous Time Markov Chain Models

We give three Markov models used in subsequent examples. Models are
concrete when no further detail is captured in any of the states or transitions.

The model shown in Figure 3 is the simplest possible Markov process that
can represent a single repairable component (SRC). The right hand side shows
standard notation. The left hand side is an equivalent, yet more compact rep-
resentation that we adopt. In Figure 3, 6 = {1,2}. When in the operational
state (1), faults occur at rate A, when the process transitions to the failed state
(2). The failed system returns to operational when the repair event has been
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effected, which occurs at rate /i. When repairs are not instantaneous, the repair
completion time is equated with the repair event epoch. Table 2 summarizes

Figure 3. Failure/Repair Transition Notation and SRC Model

these transitions and gives the steady state distribution.

x e S
l
2

fay)
(1,2)
(2,1)

qxx

-A
Qxy

A

A*

7Tx

/ /•(/ i + A)"1

A . ^ + A)"1

. Single Repairable Component Markov Process Specification

For our second example, we consider an abstraction that aggregates a se-
quence of events, which may be desirable in practice. Figure 4 show a process
consisting of a sequence of four events reduced to three events.

Figure 4. Markov Cycle Models (Right abstracts Left)

The last example is a triple modular redundancy (TMR) system with three
independent and identical components, Ci, C2, and C3. Components are either
working or failed, with failure and repair rates A and /i, respectively. System
state is defined by the state of all components, with "operational" states as two
or more components are working. Figure 5 and Table 3 show the TMR Markov
process, parameters, and steady state solution.
4.3 Safe Abstractions of Concrete Models

Superscripts a and c are used to distinguish between abstract and concrete
models. For example 6a and 8° denote abstract and concrete states, respec-
tively. To ensure safety properties, we propose two rules for defining abstract
models in terms of concrete models.

(1) To ensure that concrete states are not split and distributed among multi-
ple abstract states, we recommend that the concrete states are partitioned where
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abstract'
down- •

Figure 5. Markov TMR Model
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{1,2}
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yes
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(/i2A)-(/x + A)-3

(/i2A).(/i + A)-3

(/iA^).(/i + A)-a

(MA2)-(M + A)-3

(MA2).(/i+A)-3

A a . ( / / + A)"a

Absl
p a l

Pa"'

p a l

Abs2
p a 2
-* 1

r>a'2

Table 3. TMR Markov process specification for Figure 5

each partition corresponds to a single abstract state. When Sa = { l a , 2a,..., ma}
then a partition on Sc = U^Ti ^ c is defined so that j a = {x\x G P /} and
j a n ia = 0 for j a ^ ia. For a "safe" steady state abstraction, assign probabil-
ities to the abstract states by:

For x e 5a
) assign n^. = 22 rf^ where j G P£ D 8°.

j

When error states are aggregated in an abstraction, this assignment ensures that
the probability of the error in the abstraction is not reduced.
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This state aggregation (or partitioning) rule is consistent with the abstraction
model of heirarchical decompositions. It is also intuitive when system states
correspond to the (discrete) operational condition of physical components. For
dependent faults an abstraction that "splits probabilities" across states might
result in a better approximation. Further investigation is needed to determine if
this heirarchical decomposition rule eliminates a number of useful abstractions.

(2) We further suggest that a one step transition from x G 8a to y € 8a,
q%y > 0 only if there exists some xf e P£ C Sc and some y1 G Py C 5C such
that qc

xt , > 0. This preserves a notional mapping from the abstract model to
the system through the established mapping from the concrete model to the
system. More importantly, it implies that errors in the abstract model cannot
propagate in ways that were not specified in the concrete model.
4.4 Transition Rate Assignments for Safe Abstractions

We give three examples of safe steady state probability assignments for ab-
stractions using the two step process in Section 4.3. We investigate the rela-
tionship between safe probabilities and rate assignments.

The right side of Figure 4 shows an abstraction of a four cycle model which
merely collapses two states into one. Equation 1 gives the steady state solution
of the concrete cyclic model in Figure 4.

\c\c\c \c\c\c \c\c\c \c\c\c\
A1A?AAAlA?AAA\A2AAA\A1A?)

For the reduced model on the right of Figure 4, a similar computation gives
?ra = (TTI2, Trf, K%) in terms of transition rates A^, A3 and A4. A solution that
preserves exiting transition rates in non-aggregated states of A a is

A^)-1; Ag = A§; and Â  = A .̂ (2)g
The solution in Equation 2 is not unique (four concrete parameters define three
abstract parameters).

For the TMR example of Figure 5 we consider two abstractions. The two
right most columns of Table 3 define the abstraction partitions. Abstraction
1, which defines abstract states by the number of operational components is
shown in Figure 6. Section 4.5 shows this is a lumpable abstraction with unique

Figure 6. Number of Operational Components TMR Abstraction

(relative to the concrete model) transition rates, and how to compute them.
A courser abstraction of the TMR model is simply the two state model,

5a = {1,2} = {up, down}. This abstraction is shown with shading in Fig-
ure 5 and also in the right most column of Table 3. When approximated by a
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Markov process, this abstraction is represented in Figure 3. Equation 3 is the
result of equating the two formulations for yra, which does not have a unique
assignment. The abstract model parameters must sastisfy

Aa/M
a = (A c / / / ) 2 • (Ac + 3//)/(3Ac + / / ) (3)

In general, partitioned (abstract) processes are not Markovian, in which case
the rate assignment need not be uniquely determined. The question is which
assignment of values produces the best results from an engineering perspec-
tive. Is it preferable to hold constant the flow in, the flow out, the ratio of the
flow in to the flow out, or some other property? One can envision practical
circumstances which would favor each of these decisions.
4.5 Lumpability, Safe Abstractions and Rate Assignments

We define necessary and sufficient conditions for when the partitioned ab-
straction is again Markovian. Our discussion of strong lumpability for DTMCs
follows the presentation in [Kemeny and Snell 1976].

Consider a partition P on S with k < m elements. Define Uk,m a nd Vm,k
according to P as follows. The j t h row of U puts a probability distribution
on the elements in Pj. For example, if Pj contains bj states over which the
uniform distribution is to be placed, then

_ r l/bj for sePj
J's \ 0 otherwise w

The rows of a matrix V define the partition to which the state belongs. I.e.
f 1 for s e P

*'3 \ 0 otherwise
f 1 for sePj

*'3 \ 0 otherwise K }

Theorem 1 gives conditions for strong lumpability with respect to partition
P of a Discrete Time Markov Chain (DTMC).

THEOREM 1 (DTMC STRONG LUMPABILITY) Let P be a partition for
the DTMCwith state space S and transition matrix Q. Let U and V be matrices
defined by Equations 4 and 5 with respect to P. The DTMC is said to be
strongly lumpable with respect to P if and only if

VUQV = QV.

For a proof see Theorems 6.3.4 and 6.3.5 of fKemeny and Snell 1976].

Theorem 2 is an easily obtained analog for conditions of strong lumpability
in a Continuous Time Markov Chain (CTMC).

THEOREM 2 (CTMC STRONG LUMPABILITY) Let P be a partition for
the CTMC with finite state space 6 and infinitesimal generator matrix A. Let
U and V be matrices defined by Equations 4 and 5 with respect to P. The
CTMC is said to be strongly lumpable with respect to P if
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VUD^AV = D~XAV

where D = -diag(A). That is, D is a diagonal matrix with (D)u = —(A)a.
To show this result, note that the DTMC transition matrix Q = D~XA + I.

An application of Theorem 1 gives

VU(D~lA + I)V = (D^A + I)V.

Since UV = I, the result follows.

The rates for the abstract model are found by computing Aa = UACV. An
algorithm for finding the coursest (i.e. the most abstract) strongly lumpable
model is given in [Derisavi et al. 2003a]. This algorithm has computational
complexity O(|QC| • Iog2(|<5c|)) and space O(\QC\ + \SC\), where \QC\ is the
number of positive transitions in the concrete model.

Weak lumpability occurs when the lumped process is Markov when starting
from some (but not all) initial distributions ([Kemeny and Snell 1976]). Work
has been done linking both strong and weak lumpability MP results to the same
properties in stochastic automata(e.g. [Brinksma and Hermanns 2001]).

Investigation as to whether lumpable partitions create natural and useful
abstractions for system models is needed. When an abstraction is not lumpable,
a measure of "near lumpability" has been proposed as a measure of the quality
of the approximation.
4.6 Time Dependent or Transient Solutions

For a time dependent analysis, we define safety for an abstract model with
partition P as follows. Let x € Ps C 5C be a non-fault or safe set of states and
y G Pf C 5C be a "fault occurence" set of states. The abstraction is said to be
safe in the time interval [0, T]

Psa{Xa{t) = fa) > Px(X(t) G Pf) Vx € Ps and Vt G [0,T]. (6)

In words, we require for all t € [0, T] that when starting in safe abstract state
«sa, the probability of reaching abstract fault state fa is at least as great as the
probability of reaching any state in partition Pf when starting from in any state
in partition Ps in the concrete model.

When the concrete Markov process is started in steady state ?rc, then for ev-
ery time t > 0 and for all x € 5C, the Pn(X(i) = x) = nx. When the abstrac-
tion is strongly lumpable (hence Markovian), the requirements of Equation 6
are satisfied because probabilities sum within partitions and the distribution of
time to transition from all states in a partition to another partition is the same.

We are not sufficiently familiar with the literature to be able to report whether
a transition assignment that can satisfy the requirements of Equation 6 exists
for an arbitrary complex fault model with a non-lumpable abstraction. Perhaps
an equally important question is how those conditions might be applicable for
guiding the development of practical fault models.
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propagator receiver

Figure 7. Error Propagation Between Markov Models

4.7 Composing Concurrent Models
Figure 7 illustrates the basic idea behind composing multiple Markov chain

component models, one Markov Chain per component. The user may distin-
guish selected states as error propagating states, which is modeled as a self-
transition with a given error propagation rate. For an error that may propagate
from one component to another (determined by the architecture specification),
the rate of a transition in the receiving model is determined by the rate of the
propagating transition rather than a rate specified in the receiving model. A
fundamental result of stochastic process algebras is that, under suitable restric-
tions, such rendezvous between concurrent stochastic processes have Poisson
rates. Once this rate has been determined it can be used for the rate within the
receiving model, and the methods of the preceeding sections applied to verify
an abstraction. Similarly, self-transitions can be added to an abstract model to
define propagation rates to be used in other receiving models.

The AADL Error Model Annex includes a way to define guards on error
transitions to model things like voting and consensus protocols. In other words,
additional language features and semantics are included to compactly spec-
ify complex event propagation conditions. More research is needed to deter-
mine when high level abstractions are closely approximated by the generated
Markov abstractions.

5. Future Work
We have given only two examples of techniques that can be used to demon-

strate that an abstract model can safetly (in some sense) be substituted for
a more complex concrete model when generating hybrid and stochastic au-
tomata models from architecture specifications. Preliminary approaches for
linking MetaH/AADL safety specifications with concrete and abstract Markov
models with solvers have been reported [Binns et al. 2000]. A more complete
toolbox is needed. Also, more complex notions of abstraction may be useful,
for example conformance relations [Krichen and Tripakis 2004].
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PATTERN-BASED ANALYSIS OF AN
EMBEDDED REAL-TIME SYSTEM
ARCHITECTURE

Peter H. Feiler, David P. Gluch, John J. Hudak, Bruce A. Lewis
Software Engineering Institute (SEI), Embry-Riddle University, US Army AMRDEC

Abstract: The emerging Society of Automotive Engineers (SAE) Architecture Analysis
& Design Language (AADL) standard is an architecture modeling language
for real-time, fault-tolerant, scalable, embedded, multiprocessor systems. It
enables the development and predictable integration of highly evolvable
systems as well as analysis of existing systems. This paper discusses the role
and benefits of using the AADL in the process of analyzing an existing
avionics system. We use the AADL to describe architecture patterns in the
system being analyzed and to identify potentially systemic issues in the
system. We discuss some of the findings related to timing, scheduling, and
fault tolerance and the benefits of the use of the AADL. Additionally we
highlight the benefits of working with architecture abstractions that are
reflected in the AADL notation, in particular the separation of architecture
design decisions from implementation decisions. Such a light-weight
architecture analysis is typically followed by a full-scale AADL model of the
system with required and actual timing, performance, and reliability figures,
and its analysis to determine whether the requirements are met.

Key words: software architecture, real-time, embedded, model-based system engineering,
standard

1. INTRODUCTION

The SAE Architecture Analysis & Design Language (AADL) (AS2C,
2004) has been developed for embedded real-time systems that have
challenging resource (size, weight, power) constraints, requirements for real-
time response, fault tolerance, and specialized input/output hardware, and
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that must be certified to high levels of assurance. Intended fields of
application are avionics systems, flight management systems, space
applications, automotive applications such as engine and power train control
systems, robotics applications, industrial process control equipment, and
medical devices. The AADL was developed under the auspices of the
International Society for Automotive Engineers (SAE) in their Avionics
Systems Division (ASD) and has passed ballot (AADL, 2004). For more
information on the AADL the reader is referred to www.aadl.info.

The AADL can be used as an embedded system engineering tool in two
ways: analysis of architecture patterns identified in real systems to discover
potentially systemic issues, and analysis of a full-scale system model with
quantified system properties and generation of a model-specific runtime
system (Feiler et.al., 2003). The SEI has applied the AADL to analyze an
existing avionics system design as AADL patterns. The results of this work
are summarized in this paper and described in more detail in (Feiler et.al.,
2004). The cost-effectiveness of using MetaH, the precursor to AADL, for
precise modeling, early analysis, and auto-generation of a system
implementation is discussed in (Feiler et.al., 2000).

An avionics system typically consists of a collection of hardware and
software that controls the flight, navigation, radio communication, and in the
case of military aircraft, the targeting and weapons systems. Early
generations of digital avionics systems consisted of embedded controllers
executing on specialized hardware. As general purpose processors became
faster, controllers were implemented with application software executing
with a static timeline and shared variable architecture. Use of shared
variables minimized the memory footprint and resulted in efficient
communication between components within a controller. This approach led
to an efficient implementation with deterministic execution behavior, but
resulted in a software runtime architecture that was carefully crafted and
difficult to change.

In this paper we focus on the use of the AADL as an effective tool for
initial analysis of embedded systems for potential problem spots. We have
analyzed the architecture of an avionics system that is being modernized.
The analysis has focused on different aspects of the embedded system
architecture and identify potentially unanticipated side effects: the migration
from a statically scheduled system to a preemptively scheduled system to
improve resource utilization and create a flexible architecture, the impact of
this change in task scheduling on task communication via shared variables,
scheduling of system partitions as virtual processors, management of end-to-
end latency, and modeling of redundancy in a fault tolerant architecture. We
will examine each of these issues in the next sections.
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2. PREEMPTIVE SCHEDULING AND PORT
COMMUNICATION

In the following discussion, we will focus on a flight manager subsystem
executing within one of the system partitions. This subsystem consists of
several components that process signal data in a certain order, with some
components operating at 20Hz while other components operate at lower
rates.

The system is being migrated from a cyclic executive to the use of
preemptive fixed priority scheduling to achieve better resource utilization
and a more flexible system design. Preemptive fixed-priority scheduling is
offered as a solution to improving resource utilization of processors and to
increase the flexibility of evolving embedded systems while ensuring that
deadlines are met. In particular, if used with Rate-Monotonic Analysis
(RMA) (Klein et.al., 1993) a system design can be analyzed at design time to
determine whether all deadlines will be met despite the fact that tasks can
preempt each other.

Inter-partition communication port communication between threads is
performed via message ports, while communication within threads is based
on shared variables. The shared variable approach was retained to
accommodate legacy components and to achieve highly efficient
communication.

Aircraft |
Performance i
Calculation f

Figure 1. Preemptive Scheduling With Priority Assignment
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A naive way of introducing preemptive scheduling into this example is to
turn each task into a separate thread. To ensure the desired flow of data
between components, priorities are assigned to the threads according to the
desired execution order. We have modeled this design using AADL (shown
in Figure 1). The intended task execution order is from the top to the bottom.
The task priority is indicated with Pr i, where a smaller i represents a higher
priority.

Since AADL supports scheduling schemes based on RMA, it is natural to
examine the resulting model from an RMA perspective. Thus, it is apparent
that the manual priority assignment result in potential priority inversion, i.e.,
a lower rate thread has a higher priority than a higher rate thread. For
example, the lower-rate Integrated Navigation task is given a higher priority
than the higher-rate Guidance Processing task. This potential priority
inversion does not occur if all threads can complete their execution in a
minor frame, i.e., they have a pre-period deadline corresponding to the
highest rate thread. A consequence of this assumption is that no thread is
preempted and thread execution is the same as that of a static timeline. In
other words, assigning priorities to enforce an execution order incurs the
runtime overhead of preemptive scheduling without obtaining the benefits of
improved resource utilization and flexibility.

In summary, development of AADL models with an RMA-based fixed
priority scheme provides properties for specifying the period, deadline, and
worst-case execution time, but not for assigning priority. Thus, priority
inversion cannot be introduced. If AADL is used to model existing
implementations that do not use the RMA approach, then the red flag of
priority inversion in the RMA framework can be provided as a consistency
check in AADL models with explicit priority assignment.

The AADL promotes port-based communication between all application
threads, both within and across partitions. Furthermore, it distinguishes
between queued message communication and unqueued state
communication. Finally, the AADL distinguishes between immediate (mid-
frame) and delayed (phase-delayed) communication of state data between
periodic threads in a deterministic manner. Such communication semantics
can also be found in real-time OS standards such as OSEK (OSEK, 2003).
In this section, we model communication within the flight manager partition
through ports and discuss the issue of efficient communication
implementations.

The AADL-based model of the flight manager is shown in Figure 2. All
data communication is modeled by ports (black triangles) and connections;
there is no need for shared data and coordinating concurrent access through
locks. No task priorities have been specified by the modeler. They are
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determined according to the scheduling protocol; in the case of rate
monotonic scheduling, according to the thread periods.

Navigation • *****
Sensor ^ * * u

From
Partition*

n
f Naivigatfon I

JON*'
Guidance
Processing '

»||
5H

• Flight Plan
iL Processing

To
PartMon*

Figure 2. Port & Connection Based AADL Model of the Flight Manager

The model indicates which connections are immediate (solid line) and
which are delayed (solid line with crossing double line). Cyclic sequences of
immediate connections are not permitted since they cannot be achieved.
Such cycles can be detected by an analysis tool. If the application developer
documented an acceptable phase delay for a task (in a port property) the
degree of actual phase delay can be calculated and compared against the
acceptable value.

Note that the periodic I/O task of Figure 1 is not represented explicitly in
Figure 2. The periodic I/O task achieves two objectives: it groups several
data items together and sends them as a composite data item, i.e., the values
of several output ports are sent together; it always sends the data phase
delayed at the start of the next period. In the AADL, these two concerns are
modeled separately. Time-consistent data transfer of multiple out data ports
is modeled by an aggregate data port (shown as hollow triangle), and as
phase delay as a delayed connection. The application developer now has the
choice of transferring the data immediately or delayed, by choosing the
appropriate connection symbol.

The following observations can be made about the use of AADL. The
AADL separates runtime architecture design decisions from implementation
decisions, and application component development from architecture design.
At the same time, it precisely specifies temporal properties of both task
execution and communication in such a way that application developers
(control engineers) can develop their components against documented
assumptions regarding sampling rates, phase delay of data, and processing
rates. The semantics of AADL periodic thread execution and data port
connections assure deterministic and consistent data communication. At the
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same time, implementation of task dispatching and communication can be
delegated to tools. Such tools can generate task dispatch and communication
code that correctly implements the intended temporal semantics. In addition,
they can produce highly efficient implementations by taking advantage of
information and analysis results from the AADL model.

Separation of architecture design from implementation concerns allows a
software system engineer to investigate alternatives that improve the
performance characteristics of an embedded system in cooperation with
control engineers. One example is control engineers analyzing the sensitivity
of their controllers to variations in phase delay, while software system
engineers identify improvements in resource utilization. Another example is
sensitivity analysis by control engineers to changes in sampling and
execution rates, while system engineers investigate the impact of rate
changes on schedulability and resource utilization.

3. HIDDEN TIMING SIDE EFFECTS OF
PARTITION SCHEDULING

Partitions provide time and space partitioning between software
components. In doing so they ensure that malfunctioning components in one
partition cannot affect the execution of components in other components.
This concept is at the heart of the ARINC653 standard for avionics systems
(ARINC653, 1997). Partitions are placed in a particular order on the static
partition scheduling timeline of a processor. Partitions may have to be
rearranged on the timeline or reassigned to other processors to accommodate
new tasks and partitions and to balance the load across processors. Such
rearrangements of partitions are a delicate undertaking and may have hidden
side effects. This section focuses on the effects of such rearrangements on
inter-partition communications within and across processors.

\ Partition A

^ Thread T1 |*

> Thread t4 \

Partition A

Thread t2 ^

Thread i3

Partition A Partition B ' Partition A Time line

Figure 3. Partition Schedule & Communication

Let us first examine the issue for inter-partition communication within a
processor. We have a static timeline with partition A executing before
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partition B for the same time frame, followed by the execution of partition A
in the next time frame, as shown in Figure 3. Partition A has two threads ti
and U that can be executed in either order. Partition B similarly has two
tasks t2 and t3. If a thread ti in partition A sends data to a thread t2 in
partition B, the data is transferred mid-frame, i.e., within the same time
frame. If thread t3 sends data to thread U, the data arrives at U at the next
time frame, i.e., phase delayed (shown as an explicitly marked delayed
connection). In other words, the partition order affects the timing of
communication.

Modeling inter-partition communication in the AADL helps uncover a
potentially undesirable side effect of rearranging the partition schedule.
From an application perspective, flow between components is modeled as
mid-frame (immediate) or phase-delayed (delayed) connections. These
timing characteristics place a constraint on the possible partition orderings
on the static partition execution timeline. Thus, a system engineer
rearranging the partition timeline is made aware of such conflicts within the
AADL description.

In the case of an immediate connection, the recipient partition must be
placed after the sending partition. Note that there cannot be immediate
connections from any thread in partition B to any thread in partition A if
there is an immediate connection from a thread in partition A to a thread in
partition B (i.e., if partition A's execution must precede partition B's
execution). This can be easily detected through analysis of the AADL model.
Note that if a design is over-constrained, no partition order can satisfy the
specified communication delay characteristics.

Both the application engineer and the system engineer can contribute to
relaxing the constraints on partition ordering. The application engineer can
design the system to only use delayed inter-partition communication. This is
effectively the case in the system design of Figure 1 by the periodic I/O task
performing all inter-partition communication at the beginning of partition
execution. An application developer can also specify that a component is
insensitive to (a certain variation in) phase delay, i.e., that the connection
could be either immediate or delayed, if the receiving component can handle
variation in phase delay. The system engineer can provide an
implementation of delayed inter-partition communication by transferring
data just before a partition dispatch as part of the runtime system
functionality, thus, relieving the application developer from repeatedly
implementing the periodic I/O task. By doing so, the application architecture
is insulated from partition ordering changes.

If we have a partitioned system that is distributed across multiple
processors, the alignment of the static partition timelines on those processors
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determines whether communication is immediate or phase delayed. An
AADL model of the application system will specify the desired
communication timing characteristics, thereby placing constraints on the
ordering of tasks on partitions across all processors. Techniques for relaxing
the constraints on a partition rely on the assumption that the system is
synchronous, i.e., that the processors operate on a single global clock.

Processors in such a system may be connected via an aperiodic bus with
data transferred immediately (with a well defined maximum communication
time), or via a periodic bus with data transferred at a rate determined by the
bus itself. A periodic bus samples the data stream to be transferred and
introduces a phase delay determined by the bus rate. This means that all
connections that are bound to the bus must be delayed connections. In other
words, only partitions with delayed data port connections can be placed on
different processors that are connected physically by a periodic bus. This can
be checked by analyzing the AADL model.

In a time-triggered architecture (TTA) (TTA, 2003) the bus is periodic
and drives the scheduling of tasks on different processors. Thus, it acts as a
global clock that manages any clock drift of individual processors. In that
case, one can attempt to align the schedule of partitions across processors
under AADL's immediate connection constraints. Again, the AADL model
permits quick identification of over constraints due to immediate
connections, e.g., identification of immediate connections between two
independent pairs of threads in two different partitions.

If a distributed system is asynchronous, i.e., if each processor operates on
a local clock, clock drift can occur. Two partitions with an immediate
connection on different processors may have overlapping execution times
and the ordering may change over time. In other words, their execution times
relative to each other may vary over time, resulting in a varying sampling
phase delay for the recipient. A periodic I/O task solution, as shown in
Figure 1, does not eliminate the non-determinism in phase delay due to clock
drift. However, it does address the issue of time-consistent transfer of
aggregate data, i.e., the transfer of data as a single unit that is consistent with
respect to the execution of multiple sending threads in a given partition. As
mentioned earlier, the AADL provides an aggregate data port for this
purpose.

In summary, the ordering of partitions in a partition schedule potentially
can affect the timing characteristics of connections. AADL models with
immediate and delayed connections explicitly document the desired timing
characteristics of data transfer. They act as constraints on the placement of
partitions on their static timeline. This allows us to determine whether a
feasible partition ordering exists. The constraints can be relaxed by the
AADL runtime system supporting delayed connections, independent of
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partition scheduling order, and by the application developer investigating the
impact of a change of immediate connection requirements to delayed
connection requirements or the sensitivity of application components to
variation in phase delay. The aggregate data port concept in the AADL
contributes to addressing asynchronous distributed system issues by
providing time-consistent data transfer.

4. END-TO-END LATENCY

The avionics system has a number of flows, namely, signal streams that
require periodic processing and aperiodic command processing flows such as
the flow of control information from sensors to actuators and changing the
Navigation Radio channel. A critical requirement for these flows is to meet
the maximum latency requirements. This end-to-end latency analysis can be
based on deadline and worst-case execution time of individual steps in the
flow executed by threads and on the worst-case latency specified for the
transfer of information from one step to the next. We can separately
determine whether threads meet their deadline given their worst-case
execution times for a given processor binding, and whether the bus can
schedule the transfer of data for those connections that must communicate
via the bus within their transfer latency limits. In this section we focus on
end-to-end latency analysis on the assumption that the thread execution and
data transfer performance properties have been validated.

AADL supports the declaration of flows as flow specifications, i.e., as
externally observable flows through components, as flow paths, i.e., the
realization of the specified flows, and end-to-end flows, i.e., flow paths with
specific start and end points. Such flows are represented as sequences of
connections and threads. From their timing characteristics as periodic
threads with a given period, delayed and immediate connections, and
whether connections are bound to periodic buses, we can derive the end-to-
end latency. Worst-case latency of a flow is effectively the cumulative
latency along the path of a flow, i.e., latency due to execution (competition
for execution resources), communication (competition for the bus as
resource), and sampling or pacing (delay due to dispatch delay and/or
queuing delay). This can be based on the maximum execution latency and
maximum communication latency figures. We can also consider average
case end-to-end latency for those flows where it is acceptable.

When dealing with flows there are two major concerns: adjusting the
end-to-end latency to meet requirements, and understanding the interaction
between multiple flows, in particular at their merge points. When actual
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end-to-end latency does not meet the requirements, a typical response is to
ask application developers to make their code run more efficiently.
However, this may be futile because certain latency contributors are inherent
in the system or application architecture and are insensitive to a reduction in
actual execution time by a thread. For example, consider output that is to be
communicated over a periodic bus. Having a source thread execute faster to
output a little earlier will not result in improvement unless the change
crosses a period boundary of the bus sampling. Similarly, a periodic thread
receiving data through a data port connection does not receive the data
earlier if the sending thread is also periodic, since the data transfer semantics
in that case are defined by the AADL to be deterministic.

The representation of an application architecture in the AADL, with
timing characteristics for both threads and connections and an explicit
specification of flows, allows us to quickly identify the key contributors to
end-to-end latency. In the previous sections, we have encouraged the
consideration of delayed connections between threads to improve processor
utilization and reduce constraints on partition scheduling order. These are
decisions that can be revisited to reduce end-to-end latency. We may also
eliminate sampling latencies if delayed connections can be turned into
immediate connections. We can examine latency contributors due to the
binding of the application system to the execution platform. For example, we
can consider placing processing steps in a critical flow on the same
processor. We can examine latency contributors due to allocation of
application components into partitions. For example, we can consider
collocating two sequential processing steps in the same partition.

A key issue with multiple flows is the interaction of their latency
characteristics. If we have a periodic thread receiving data from an aperiodic
thread, the actual completion time of the sending thread relative to the
dispatch of the receiving periodic thread determines which value is
accessible to the receiving thread. Variation in actual completion time may
result in either the old or the new value being accessible, i.e., data latency
may non-deterministically vary by a period. This potential non-determinism
can be identified through analysis and recorded as a property in the AADL
model. Note that the semantics of immediate and delayed data port
connections have been defined in the AADL such that neither immediate nor
delayed data port communication between periodic threads introduces
latency non-determinism.

Non-determinism in latency can result in potentially undesirable
consequences. For example non-deterministic variation in phase delay has
the effect of an oscillating target position resulting in a blurred display. In
general, whenever two data streams merge and one data stream has non-
deterministic latency there is a potential problem. In actual systems, the
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merge point is often a controller. In that case, any oscillation observed by the
control engineer may be perceived as noise in the sensor data, which the
control engineer may compensate for by adjustments in the controller.

In summary, an AADL model specifies timing characteristics for both the
execution of threads and the transfer of data between threads. The AADL
supports the specification of end-to-end flows as well as flow specifications
through individual components as part of their interface specification. As a
result the worst-case end-to-end latency of an end-to-end flow specified for a
system can be determined in terms of the expected worst-case latency
specified as part of the flow specification of each subsystem. In particular,
this permits end-to-end latency analysis early in development to identify
potential problem spots when subsystem implementations may not have been
completed yet. As the implementation of the system gets refined the latency
analysis results can become less conservative to reflect the full
implementation.

5. REDUNDANCY IN APPLICATION
ARCHITECTURES

Many embedded real-time systems have a requirement for high
dependability. Dependability is the ability of a system to continue to produce
the desired service to the user when the system is exposed to undesirable
conditions (LaPrie, 2002). One method to increase computer systems'
dependability is through redundancy of hardware, software or both. The
AADL contains constructs that allow the developer to clearly represent and
subsequently model the redundant artifacts at various levels of abstraction.
In this section, we focus on the dependability aspects of a system and how
general fault tolerant approaches can be supported by the AADL.

A typical diagram of such a software architecture mapped onto the
hardware is shown in Figure 4. Multiple instances of hardware and software
are shown with little or no indication as to the intended functional
redundancy. This results in speculation about the intended behavior of the
system under fault conditions. Such information tends to be spread
throughout the design document. For example, there are four MFD
processors, four DMs, and four WAMs. Are they one operational unit with
three spares, two operational units each with its own spare, or four fully
functional operational units? What is the mechanism by which failures are
detected? What is the mechanism by which failover is achieved? Does each
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replicated unit perform failover switching separately, or are groups of
replicated tasks switched together? What data is necessary, if any, for state
space preservation? What are the data sources that feed the redundant
entities? Answers to these types of questions could not be ascertained from
the architectural drawings. Reading through software design documentation
uncovered some useful information, but not enough to completely model the
system. It is in this setting that the AADL abstractions help guide us to a
clear understanding of the fault tolerant aspects of the system.

MFD Processors
Copilot Pilot

Mission

processors

Figure 4. Typical Documentation of Avionics System Architecture

Analysis of this architecture from a dependability perspective begins with
understanding what is being replicated. The intentions of the redundancy
design can be expressed as a set of properties on the basic system
architecture. In Figure 5 we are showing the above system as an AADL
model. The logical grouping capability is used to clearly indicate which
logical units are treated as redundant units. The degree of redundancy is
indicated through a property shown visually in an oval decorator icon.
Specific choices of redundancy mechanisms, such as master/slave, and the
form of replication, are indicated through properties pre-declared as part of
the AADL core language. Collocation constraints of components on
processors and memory as well as connections over buses are similarly
specified through properties.

Specific redundancy mechanisms can also be modeled in AADL as
separate patterns. Figure 6 illustrates the master-slave pattern we found
documented for several subsystems, each written with their own words and
limited precision. This made it difficult to discern whether a single master-
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slave mechanism and protocol was used or whether different subsystems had
variations. Questions that should be answerable from a design document
include: Are both the master and slave active? What is the operational
scenario for failover? Is state information exchanged between the redundant
components? Who decides whether a component failed?

Figure 5. AADL Representation of Avionics System Redundancy

We use the AADL mode concept to model alternative fault tolerant
system configurations. Figure 6 shows the replicated subsystem PCM as
PCM.repl and PCM.rep2 contained in PCM, which takes on the role of SSI
(Figure 5). The left hand side illustrates the different mode configurations of
the master-slave pattern. In Master mode, PCM.repl is active, receives input,
and provides output (shown in black). PCM.rep2 (the slave copy) is not
active and does not receive input nor produce output (shown in grey). In
Slave mode the opposite is the case. The right-hand side of Figure 6
illustrates a hot-standby Master-Slave pattern of a stateful application
component. In this case both copies of the component are supplied with
input and both process the data. However, the output of only one copy is
made available to the component output. The state of the component is
modeled with the data component construct and is shown as exchanged
between the components. This exchange can be specified to occur while
operating in a mode, or on a mode transition. The figure also shows an
Observer thread that receives the output from both copies and decides
whether to operate in Master or Slave mode. The data is specified to be
received by the observer thread at the next period. If a mode switch is
necessary, it requests any necessary mode change by raising an appropriate
event through the respective event out port (shown as a double arrow head).
This event is routed to the appropriate mode transition in the mode state
transition diagram. If the event arrives at an outgoing transition of the
current mode, a mode switch is initiated.
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Figure 6. Hot Standby Master-Slave Mode Logic

In summary, the AADL allows the aggregation of application and
execution platform components into a system hierarchy. Properties can be
associated with components to specify the degree and form of desired
redundancy. Redundancy protocols can be modeled in the AADL utilizing
modes, mode transitions, routing of events that reflect detected faults to
appropriate mode transitions. Binding constraints address collocation
restrictions of replicated components. Error models support stochastic
modeling of fault occurrences for reliability analysis.

6. CONCLUSION

In this paper, we have analyzed an existing avionics system to show use
of the SAE AADL, an emerging international standard for modeling the
system architecture of embedded real-time systems. The AADL focuses on
modeling task and communication architectures by modeling application
system architectures as threads, processes, and aggregates thereof, and by
modeling their interactions as port connections, synchronous subprogram
calls, or concurrency controlled access to shared data. An application system
architecture is then mapped onto an execution platform to support analysis of
runtime system properties such as schedulability and reliability.

In the process of applying the AADL in the analysis of an existing
avionics system, we were led to modeling the system so that implementation
decisions were separated from architecture decisions. In particular, we were
able to model the system interactions purely in the form of port
communication, although the actual system is implemented with
communication through shared variables. The use of the AADL abstractions
allowed us to quickly identify potential issues with the shared variable
communication solution within partitions.

The AADL model and its support for characterizing timing for both
threads and connections allowed us to establish a framework for negotiating
tradeoffs in resource demand between the application developer (typically, a
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control engineer) and the system engineer who is responsible for integrating
the application components into an operational system. The characterization
of connections as immediate and delayed also allowed us to identify issues
with respect to partition ordering on the static partition scheduling timeline
and permitted us to perform end-to-end latency analysis effectively.

Finally, the use of the AADL modeling capability allowed us to describe
the redundancy aspects of the system architecture and to address fault
tolerance concisely. By focusing on separation of concerns, we were able to
describe the application system perspective, the realization of the chosen
redundancy protocol, and the mapping onto the execution platform as three
views.
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Abstract This paper presents the REACT project, dedicated to real-time system
design. REACT aims at combining into an architectural design process
some formal modelling and verification techniques and providing those
corresponding tools. It emphasizes on the ADL of REACT (CLARA),
and the validation of functional architectures using formal techniques.

Keywords: ADL, real-time systems, architecture design process, formal validation

1. Introduction

The increasing complexity of real-time systems (as regards not only
their functionality but also their hardware and software components and
the interactions and mappings between these components) in domains
such as in-vehicle embedded electronic, robotics, field-devices control, or
avionic leads to attach more and more importance to their architectural
design step. Architectural design is not only about specifying (or even
choosing) and assembling (logical, software, hardware, . . . ) components
together so as to create a coherent and functionally correct system. It
has also to make sure that some other extra-functional1 requirements
such as timeliness, reliability, safety, costs, etc. will eventually be met
by the system under operation. Introducing V&V activities as soon as
possible in the development process of computer-based control systems
is now a widely accepted need. This implies several important consider-

1 As in (ARTIST, 2003), we use extra-functional instead of non-functional. Indeed, the timing
constraints for instance, are part of the definition of the functionalities of a real-time system
and thus should not be qualified as "non-functional".
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ations: (i) designers must have available a way (a language) to describe
(to model) the system architecture (its constitutive parts and relations)
at different levels of abstraction; (ii) verification tools for system anal-
ysis and stating on its performances from the architectural level (and
still after) have to be provided; (iii) the architectural design process
(transformation(s) from the functional architecture up to the runtime
configuration) has to be integrated to form a continuous and traceable
chain, even an automatic one. It should guarantee that the (functional
and extra-functional) properties stated at the upper levels are always
met at the lower levels.

The objectives of our present work are to combine into an architec-
tural design process some formal modelling and verification techniques.
The strong dependency between embedded software and its execution
platform requires us to focus on techniques that take into account the
operational characteristics of the system, so as to reason on its extra-
functional properties. REACT, "REal-time Application Configuration
Tool", is the name we gave to this project and to the corresponding
toolkit we are thinking of building.

Real-time systems that are aimed, are embedded ones, using some
RTOS or middleware as runtime platform. They may be distributed.
However we only consider situations where the system hardware is al-
ready defined (either a ready-to-use commercial platform or a reused
yet designed one): hardware architecture design or co-design are out of
concern.

In this paper, we present only a few constitutive parts of REACT: its
architecture description language CLARA2and the validation of func-
tional architectures. It is built as follows: in section 2, we give an
overview of the development process, from the high level design to the
binary code synthesis. In section 3, we introduce CLARA, the ADL that
we use to perform the description of embedded software systems. In sec-
tion 4, we discuss the validation of architecture descriptions with regards
to some functional and extra-functional properties.

2. Design process

The REACT project aims at offering a set of formal modelling and
verification facilities in an unified framework for the rigorous architec-
tural design of real-time systems. It does not cover the whole develop-
ment process: we consider that the specifications are given. Our main
goal is to produce an operational architecture that has been validated

2CLARA: Configuration LAnguage for Real-time Application (Durand, 1998).
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against some functional and extra-functional requirements (especially
timeliness). Before to present the process, we define some vocabulary:

We call functional architecture (FA) the structure of the system in
terms of its functions, their behaviours, and the control and data flows
between them {function denotes a logical computation block that has
not to be refined at this design level).

We call runtime platform (RP) the hardware and low-level software
layer (RTOS, device drivers, middlewares, communication protocols)
that are used for the deployment of the application. All these elements
are seen as a platform, accessible through a set of runtime services.

We call operational architecture (OA) the result of the mapping of
the FA onto the RP. The functions are allocated to tasks and the tasks
are allocated to processing nodes. The control flows and data flows
are translated into appropriate invocations of RP services. At last, the
configuration of the RP (e.g. priorities of the tasks and messages) is
given.

Spec.

described in this paper

analysis,
re-designcandidate

FA'
valid FA

analysis,
re-design

out of the scope of RE-
ACTACT Nvalid RP

Figure 1. Overview of the design process of REACT.

As an entry point of REACT, we have defined an ADL, CLARA, ded-
icated to the description of the FA of reactive systems. It provides also
some support for specifying timing constraints and properties. Thus,
the design process (see fig.l) starts with the description of a candidate
FA, which needs to be validated. For this purpose, we use Petri net
(PN) theory to assess safety properties (eg. deadlock freedom). We also
propose a high level consistency analysis of the timing constraints and
properties (assessment of a necessary condition over the existence of a
valid implementation). Given the results of these analyses, the designer
can either validate the candidate and go on, or design a new one (gen-
erally not from scratch). As an output of these steps, a valid FA is
defined, together with a set of timing constraints and properties that
may be consistent. A complete illustration of this part of the process is
given in the paper.



70 Architecture Description Languages

As stated in the introduction, we consider that the RP is already
defined. To achieve the mapping of the FA onto the RP so as to produce
an OA, we have explored a first direction and are presently working
on a second one. We present both approaches hereafter (due to space
limitation, they won't be discussed any further in this paper).

With the first approach (operator + on fig. 1, see (Faucou, 2002)),
the mapping is made so as to "preserve the structure" of the FA. It
targets especially the OSEK/VDX-based RP3. The active components
are mapped onto OSEK tasks that interact, according to the connections
described in the FA, through the services of a "CLARA middleware"
(the configuration of which is extracted from the FA). The assignment
of the tasks to the computing nodes and the configuration of the RP have
to be done by the system architect. Such a mapping allows to preserve
traceability between the levels (the FA and the OA). Nevertheless, it can
potentially produce OA with a complex execution structure involving a
lot of inter-task communications, the behaviour of which being hardly
analysable. On the one hand, we have developed a simulation approach
that takes into account the effective operational behaviour of the RP
(including the middleware, OS and communication protocol). It is thus
possible to observe for instance the impact of ISR executions on the
scheduling of the tasks. It is also a good framework to play the "what-
if?" game in order to tune the OA. On the other hand, we are studying
the use of an extension of Time Petri Nets (TPN) to real-time scheduling
(SETPN from (Roux and Deplanche, 2002)). These two approaches are
supplementary.

The second approach (operator x on fig. 1) aims at defining algorithms
and tools to generate a "valid by construction" OA ("valid" in reference
to timeliness). Similar works are being presently driven in the "model
integrated computing" community (Kodase et aL, 2003). We target RP
using fixed priority task scheduling and CAN protocol (ISO, 2003). To
achieve our goal, we have identified several intermediate steps. In a
first time, end-to-end control flows (transactions) are extracted from the
FA. They give a precedence relationship between user-defined functions.
In a second time, a task set is composed by grouping the user-defined
functions (using some heuristics) of a transaction. This task set is the
input of a tool that tries to find an allocation of tasks to processing
nodes and priorities to tasks and messages, so that the resulting OA
meets all the end-to-end timing constraints (the tool combines constraint
programming and schedulability analysis (Cambazard et aL, 2004)). For

3OSEK/VDX is a set of specifications for a real-time runtime platform dedicated to in-vehicle
embedded systems. Homepage: http://www.osek-vdx.org.
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more complex properties, it is possible to use (for instance) SETPN
analysis.

The logical follow-up of the works exposed above concerns code syn-
thesis: given a set of files containing the source code of user-defined
functions and the description of a valid OA, synthesise the code of the
tasks, as well as the configuration files for the RTOS and communica-
tion protocols. A tool has also to be developed to ensure the compliance
between the code of the user-defined functions and their model (used for
the design of the OA). Presently, these problems are not explored within
REACT.

In the next sections, we illustrate the process exposed here, from the
first design of the FA to its validation.

3. CLARA: the ADL

According to (Medvidovic and Taylor, 2000), an ADL is a language
that provides features for modeling a software system's conceptual ar-
chitecture. Classically, its building blocks are components, connectors
and configurations. Within the context of REACT, we have defined an
ADL, CLARA, to describe the functional architecture of reactive sys-
tems (Durand, 1998). CLARA stands for "Configuration LAnguage for
Real-time Applications".

While defining CLARA, we paid a special attention to the descrip-
tion of the control flows. Compared to other ADLs, it allows to express
complex synchronisation and activation laws. It provides also some sup-
port for the description of the behaviour of the components and for the
expression of real-time requirements (timing constraints) and properties
(time budgets).

We illustrate 4 the concepts and abstractions of CLARA through the
design of the FA of a small reactive embedded system (see shaded frames).
The parts of the text related to this design are embedded within coloured
panels. Moreover, to facilitate the global understanding, we give on fig. 2
its final functional architecture.

3.1 The components

Five component families are proposed: activity, occurrence generator,
shared resource, shared variable and system. Within each of the four
first families, the architect must define at first a set of types that will be
used (through instantiation) in the description.

4CLARA has both a textual and a graphical syntax. In this paper, we use mainly the
graphical one.
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Terms of the problem: We consider a simple feedback control loop: two sensors mea-
sure the value of the controlled variable (its value is not spatially homogeneous) and an
actuator sets the manipulated variable to the computed value. Moreover, the state of the
controlled process has to be displayed to an operator (HMI).
The control loop must be triggered every 10ms, with an end-to-end deadline equal to the
period (stringent constraint). The HMI must be updated every 20ms, with a deadline
equal to the period (soft constraint: a period on two can be missed).

system control loop
(HT

Figure 2. Description of the control loop in CLARA

The activity family denotes active components. It can be either
atomic or composed (in our example, we only use atomic activities). For
short, atomic activities are the basic building blocks of the architecture
and composed activities introduce abstraction levels through hierarchy
and encapsulation.

An activity has two interfaces: control and interaction. The control
interface has only two ports: start (input port) and end (output port).
start is used to attach an activation law; end is used to signal the end
of the execution. From a behavioural point of view, they control the
transition from "not operational" to "operational" state 5. The interac-
tion interface is a user-defined set of directed exchange ports (to transfer
data or signals) and a set of access ports (to access shared resources or
variables). The graphical representation of an activity is given figure3:
cmd and order are data exchange ports, actu is a resource access port.

When it becomes operational, an (atomic) activity executes a finite
sequence (fig. 4). The actions can be user functions for which an execu-
tion time budget6 has to be given (a closed interval that will be used for

5The execution of an activity instance is not reentrant.
6If it is planned to use an heterogeneous runtime platform, budgets are couples (function,
processor).
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name ACTUATE;
sequence {
read(cmd);
access(actu.get);
call(translate_command,0.5,l);
access(actu .release);
write(order);

Figure 3. Graphics of an activity Figure 4. Behaviour of an activity

verification purpose7). To ensure consistency between the model and
the implementation, the budget becomes a requirement (i.e. the "Best
Case Execution Time" and the "Worst Case Execution Time" of the
function must be within the interval). Other actions are invocations of
interaction services (eg. read(cmd) or access(actu.get)). The invocation
of the control services (on port start and end) are implicit.

All control and interaction service invocations are synchronous. They
can be blocking, depending on the behaviour of the connector attached
to the port (see below). This enforces the designer to give a complete
specification of the application control flows.

Specification of the activities: The FA contains 5 (atomic) activity (see fig. 2):

sampJel and sample2 (two instances of the same type) read the controlled variable
value on v_raw, translate it into a computation-friendly format and write the result
on v.out;

control computes the command from two values (read on v_l and v_2) and writes
the result on cmd;

actuate controls the actuator. It reads the command on cmd, translates it into an
actuator-friendly format and writes the result on order;

HMI produces (a part of) a synoptic of the controlled process and sends it to an
external display equipment. It reads the newly computed command on cmd and
writes the new view on view.

The occurrence generator (OG) family denotes data or signal sources,
which can be part of the system or its environment. Their interface
is made of a single output signal or data port (signal ports are white
triangles, data ports are black ones). The associated graphics is a circle
containing the name of the instance and an output port. An OG can
be periodic or sporadic. A periodic OG can only produce signals. Its
behaviour is defined through its period attribute (cycle time). A sporadic
OG can produce signals or data. Its behaviour is given as a sequence

7Closed intervals implicitly forbid the use of blocking calls in user functions.
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of dates (resp. a sequence of couples (date, value)) that denotes the
absolute signal production dates (resp. the absolute data production
dates and the data values).

Specification of the OG: The control loop has a period of 10ms: it is measured by a
periodic OG Hi The HMI has a period of 40ms: the periods being different, we will use
another periodic OG (Hh).
Furthermore, there are two sporadic data sources in the environment (one for each sensor)
modelled by SI and S2. We don't define their behaviour and we don't need it (for much
of the analysis work to perform) because the control flows of the control loop are not
synchronised with the production dates of these OG.

The shared resources and shared variables denote "passive" entities.
Their interface is composed of a single access port (containing subports
get and release for resources and read and write for variables). The
graphics are an oval for a resource and an octagon for a variable, dec-
orated with the instance name and the access port. The access policy
is an attribute. The set of predefined values contains mutual exclusion,
write exclusive / read many, etc.

Specification of the shared resources: We use a shared resource to control the access
to the actuator (access policy: mutex; name: actu). Although it is not shared by several
activities, it is included: (i) to illustrate the concept of shared resource in CLARA, (ii)
to reference its name in the description of the behaviour of actuate, (iii) to anticipate
further extensions of the architecture (for instance adding an activity that uses the same
actuator).

The last component family is the system family, used to define the
boundaries and the interface of the control system under design. Each
architecture contains exactly one system component. In fig. 2, the system
is named system-ControLloop.

3.2 The links

In CLARA, a link8 is used to connect a set of output ports to a set
of input ports. Beyond to specify which components interact, it states
the interaction policies that are used in terms of control flow between
the "producers" and the "consumers". A link is built from a set of
basic building blocks that allow the specification of very simple as well

8In the literature, "connector" is used rather than "link" . However, as "connector" denotes
a specific CLARA object, we use "link".
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as very complex policies9. These blocks are: protocols, connectors and
operators (not used in this paper).

A protocol has a producer hook and a consumer hook. Each one is as-
sociated to a service (production or consumption) and is attached to one
(and only one) connector (see below). A protocol synchronises its pro-
ducers with its consumers according to a specific policy. At the present
time, a set of pre-defined protocols is proposed: rendez-vous, transient,
blackboard, blackboard with consumption and mailbox. Graphically, it
is a small rectangle with a specific symbol inside. The example uses:
mailbox (symbol: a number that is the size of the box), blackboard
(symbol: a lightning) and transient (symbol: a peak in the middle of a
flat line).

A connector connects ports to protocol hooks. A simple connector is
just a wire (concerning both graphics and behaviour). For more complex
connexions, complex connectors have been defined:

• conjunctive connectors (a circled &) for "1 port to n hooks": pro-
duction (resp. consumption) requests are broadcasted to all pro-
tocols; a single acknowledgement is delivered to the caller when all
protocols have acknowledged.

• selective connectors (a circled vertical dash) for "n ports to 1
hook": each production (resp. consumption) request is delivered
to the protocol and the acknowledgement is sent to the original
caller (concurrent requests are serialised).

• hybrid connector, which is (graphics and behaviour) the "merging"
of a conjunctive connector and a selective connector.

3.3 The configurations

In the ADL ontology, a configuration is a bipartite graph of compo-
nents and connectors that describes (a part of) the architecture of the
system. The system of fig. 2 is a configuration. As CLARA targets real-
time reactive systems, it supports the expression of real-time constraints
at the configuration level. More configuration-level facilities might be of-
fered in the future, depending on the needs detected during the on-going
case-studies.

A real-time constraint is expressed on events that are observable at the
architecture level: production or access request and acknowledgement.
A constraint can be:

9There is a list of link patterns that are forbidden because they lead to structural deadlocks.
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Specification of the links: At first, we specify the data exchange links.

• from sample_l.v^out to control ,v_l (simple link): we use a 1-mailbox protocol:
every produced value must be consumed before the delivery of the next one. We
do the same with sample_2.

• from control.cmd to actuate.cmd and HMI.cmd (complex link, conjunctive con-
nector on producer side): on the one hand, actuate must consume every command
(before the production of the next one) so we use a 1-mailbox protocol; on the
other hand, HMI reads the value "when it wants" and is allowed to loose some
occurrences so we use a blackboard protocol.

Then we specify the activation laws.

• HI output signal activates sample_l and sampled (complex link, conjunctive con-
nector on producer side): a blackboard is used and a timing constraint will require
that every occurrence is consumed; control is activated each time there are new
values on v_l and v_2 (complex link, conjunctive connector on consumer side);
actuate is activated each time there is a new value on cmd (simple link).

• Hh output signal activates HMI (simple link): a transient protocol (without mem-
ory) is used. Thus, some occurrences can be lost (HMI must be waiting for the
signal to catch it). A timing constraint will require that two consecutive occur-
rences are not lost.

At last, we specify that the system asynchronously reads the values produced by SI and
S2, using blackboard protocols.

• absolute: the first occurrence of an event must occur in [dmin,
dmax] where dmin and dm ax are dates;

• relative: the delay between two consecutive occurrences of an event
must me in [dmin,dmax] where dmin and dmax are delay;

• causal: the delay between the ith occurrence of a source event and
the ith occurrence of a target event must be in [dmin, dmax] where
dmin and dmax are delay.

The graphic is a curved line between the involved ports. At the ex-
tremities of the line, a bullet denotes a req (request) event, a dash de-
notes a ack (acknowledgement) event. The interval labels the line. For
causality constraint, an arrow indicates the direction. This notation is
sufficient for end-to-end deadlines and simple real-time constraints and
can be used by non specialists. However, it lacks the expressiveness of
TCTL, the possibility to express probabilistic QoS requirements, . . .

4. Validation of the functional architecture

An architecture provides with a comprehensive description of the sys-
tem. This description must be validated before to engage the next design
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Expression of the timing constraints: There are three constraints:

the control loop execution must complete at most IQms after its last activation
(stringent constraint). This is a causality constraint between Hl.out.req and actu-
ate, order, req;

to avoid the lost of occurrences of the control loop clock, the execution of samplel
and sample2 must complete at most 10ms after the clock period: two causality
constraints between Hl.out.req and samplel.end.cnf and between Hl.out.req and
sample2.end.cnf;

the HMI activity must not lost two consecutive occurrences of Hh.out. We translate
this constraint as a deadline on its execution: once operational, it must finish
before 40ms (twice the period of Hh). A deadline is a causality constraint between
start.cnf and end.cnf.

step. For critical system, the use of formal methods in the validation
process is mandatory. These methods can be used only if (a subset of)
the ADL has a formal semantics. Moreover, it makes sense only if a
rigorous approach is followed for the continuation of the design process,
to ensure that the successive refinement steps (up to the binary code)
preserve the properties stated at the upper level. The operational se-
mantics of CLARA is given by means of (time) Petri nets (TPN). We
will first introduce (informally) this semantics and expose how a CLARA
architecture is translated into a TPN model. Then, we will show some
analysis possibilities on our example. For PN, useful definitions and
theory can be found in (Murata, 1989). For TPN, see (Berthomieu and
Diaz, 1991).

4.1 TPN model of a CLARA architecture
The translation from a CLARA description to a TPN is done in two

steps. At first, every entity (activities, shared variables, protocols, con-
nectors, etc.) is associated to a TPN pattern. If the behaviour of the
entity is predefined or defined through simple parameters (e.g. shared
resources), a predefined pattern is used. For more complex entities (ac-
tivities and aperiodic occurrence generators), a pattern is generated from
the textual behaviour description. Then, a global TPN is built by merg-
ing the elementary patterns, according to the composition rules specified
in the CLARA description. A prototype tool has been designed that per-
forms the translation (the TPN follows the input format of ROMEO10).

1 0ROMEO: http: //www. irccyn. ec-nantes. f r/d/en/equipes/TempsReel/logs/
software-2-romeo
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43V^q xreq f00[a'bl

Figure 5. Control interface Figure 6. read(x); call(foo,a,b)

Fig. 5 shows the TPN pattern associated to an activity. The visible
transitions model the (implicit) interaction on the start and end ports.
The dashed box is to be replaced by a pattern corresponding to the
activity behaviour (see fig. 6): an interaction on port x gives rise to
a pair of transitions (x.req: interaction request and x.ack: interaction
acknowledgement); the invocation of the user-defined function foo gives
rise to a single timed transition foo[a,b] where [a,b] is the time budget
allocated to the function foo.

x.req x . a c k req1
 a c k' x.req

iOH M M "
.req x . a

i—OH

Figure 7. Connection of a port to a link

Fig. 7 illustrates the merging step. The x.req and x.ack transitions
are respectively merged with transition req' and ack' of the connector
attached to port x. The same mechanism is used to make the connections
between all the entities.

The TPN corresponding to our example has 91 places and 71 tran-
sitions. This is obviously "big". This is a consequence of the "naive"
translation performed by the tool. Indeed, most of the places and tran-
sitions are withdrawn by the usual static reduction rules (Murata, 1989)
applied before analysis (presently, the reduction is handmade).

4.2 Validation of the candidate design

At this design level, the validation concerns some functional prop-
erties and the consistency between the timing constraints and the al-
located time budgets. To achieve these goals, we use presently the
tools ROMEO, CADP11 and TINA12. ROMEO computes (among other
things) the marking graph of a PN. TINA computes (among other
things) its structural properties. CADP allows to perform a wide set

11 CADP: http: //www. inrialpes. fr/vasy/cadp/
12TINA: http://www.laas.fr/tina/
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of analysis on labelled transition systems (ROMEO and TINA can out-
put the marking graph of a PN in CADP format).

At first, the timing informations are discarded and we consider the
classical PN theory. The goal is to state properties on the FA that will
be verified by any further correct refinement (a system the behaviour of
which is simulated by our PN for the events that are observable at the
FA level). This "weak" equivalence relation limits us to the analysis of
safety properties. As an example, we will use deadlock freedom analysis.

Then, the usual reduction rules are applied onto the PN. It does not
only reduce the size of the model but also produces a bounded PN (clock
modeling produces unbounded marking when the time is not taken into
account). Notice that this transformation preserves: liveness, safeness
and boundedness (for the places still present in the reduced model).
Concerning our example, the reduced PN has only 42 places and 25
transitions. Its marking graph has 26,124 states and 136,204 transitions.
There is no deadlock state. Some more complex properties might be
verified using CADP model-checking facilities (e.g. "for each pair of
input value, there is exactly one actuation"). They can be carried along
the design process as long as they can be expressed as safety properties.

We will now use the structural analysis of the PN, performed by TINA.
We expect our system to have two periodic end-to-end transactions:
control loop and HMI update. To validate this assumption, we look after
the T-semi-flow generating sets (a positive T-semi-flow denotes a cyclic
behaviour of the system). Five positive T-semi-flow generating sets exist.
All of them are feasible (i.e. there exists at least one run from the initial
state whose firing vector corresponds). Three of them are artefacts of the
model; The two others correspond respectively to the cyclic execution of
the control-loop transaction and the HMI transaction. If we let aside the
artefacts,the description corresponds to our expectations. The artefacts
are caused by the modelling of periodic occurrence generators: as we
do not take time into account, the "y.expire" transitions (corresponding
to the clock expiration) can be fired from any marking. If we try to
remove the artefacts by controlling the transitions, we reduce the set
of possible implementations (the behaviour of which will be simulated
by the model): we would make the strong hypothesis that some part of
the transaction is always executed within one period of the occurrence
generator. Such a reduction of the design space is obviously not desirable
at the FA level since it could potentially exclude all the valid solutions.

Let's consider the consistency between the timing constraints and the
time budgets. It is clear that -at this level- it is not possible to assess
the timing correctness: it cannot be done without taking into account
the operational characteristics (mapping of functions to tasks, of tasks
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to nodes, scheduling policies and parameters, etc.). However, a first
analysis can be driven to check that there may be an implementation,
with these time budgets, that could meet the constraints (i.e. we check
a necessary condition). We have to find a "best case" for the execution
time of the sequence (of transitions) bounded by es (the "starting" event
of the constraint) and ec (the "closing" event). "Best" means that every
possible implementation will produce highest or equal execution times.

First, notice that the study of the state class graph of the TPN doesn't
give us a best case from an operational point of view. To get convinced,
consider a system with two concurrent tasks T\ and T2. T\ executes the
action a and completes. T<± executes b then c and completes. Actions a
and b need a shared resource and are mutually exclusive. The TPN of
fig. 8 is a model of this system (where one can see the execution time of
each action). If the deadline of T\ is 10 and the deadline of T<i is 7, the
analysis will show that T\ always meets its deadline whereas T2 always
misses its deadline. Nevertheless, this system is schedulable, e.g. with a
fixed priority scheduler and prio{T2) > prio(Ti).

Let's go back to our consistency checking. Because we don't know the
operational characteristics of the system, the only information that we
can take into account is the precedence relation between the executions
of the user-defined functions of a same transaction and their execution
time budgets. Thus, we must extract the graph of the precedence rela-
tion from the PN marking graph. Then, the edges corresponding to the
invocation of user-defined functions (involved in the constrained transac-
tion) are weighted with the upper bounds of the function time budgets.
If no information is known about the RP, we have to compute the value
of the longest path in the graph (to take into account an optimistic
true parallelism). In case of a mono-processor RP (we consider this
hypothesis for our example), we just have to sum up the weights (the
execution sequence is a sequential chain) and compare the result to the
upper bound of the constraint. Any implementation for which the com-
putation times actually reach the upper bounds of the execution time
budget will inevitably executes this sequence of functions with a higher
or equal execution time (in the implementation, the execution will be
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delayed at least by the overhead of the RTOS services, and may be by
the network and/or the execution of some transactions of higher prior-
ity). Thus, timing consistency between constraints and budgets occurs
when the value of the path is less or equal than the upper bound of the
constraint.

For our example, the work is trivial for three of the constraints (they
involve only one atomic activity and thus no concurrency). For the
fourth one (between, Hl.out.req and actuate.order.ack), the problem is a
bit more complex. Even if it can be done "by hand", we illustrate how
to use tools to automate the work.

First, we know that the control loop transaction is cyclic and has no
transitional mode. Thus, we can limit our study to the paths in the
marking graph that correspond to the first instance of the transaction
(any further instance will exactly have the same set of runs). At first, we
hide all the labels that are not useful (i.e. not corresponding to es, ec or
any function of the transaction where es is the source event and ec the
closing event of the constrained sequence). Then, we extract the paths
that match i*.es.(~ es& ~ ec)*.ec (a path starting with a sequence of
silent actions, then es, then any action that is not es and not ec, then ec)
using CADP. We forbid the paths containing more than one occurrence
of es in order to eliminate the interference of some other instance of the
transaction. From this set of paths, we obtain the labelled transition
system (LTS) shown on fig. 9. The length of the chain is 6 ms and the
upper constraint is 10 ms. We conclude that the solution space may
contain some valid implementations.

We now have a candidate FA, together with a set of extra-functional
characteristics, that have been validated. We have shown that it will
not deadlock and that the values of the extra-functional properties seem
to be consistent.

As stated in section 2, the next step is to map the candidate FA onto
the RP, so as to obtain a candidate OA. This candidate OA has to be
validated too, especially with regards to extra-functional properties that
can be assessed only at this level. However, due to space limitation, we
will not detail this stage in this paper.

5. Conclusion
In this paper, we have described the goals of the REACT project. We

have exposed (i) the process that it adopts for the architectural design of
real-time systems; (ii) its ADL CLARA; (iii) the validation of CLARA
architectures through formal analysis techniques.
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In (Faucou et al., 2004) (extended version of this paper), a comparison
is done between CLARA and some related projects (all of them being
discussed in other papers included in this volume): MetaH/AADL (
Binns and Vestal, 2001), COTRE (Farines et al., 2003) and EAST (
Debruyne et al., 2004). Although the development of REACT is cer-
tainly less ahead than these projects, we have highlighted some of its
specificities. Hence, the link mechanism of CLARA allows to easily de-
scribe complex multi-components synchronisation patterns and enforces
the designer to specify and validate the control flows at the architecture
level (obviously a good practice for real-time system design) . Moreover,
compared to MetaH/AADL or Cotre, REACT can be used at a higher
design level (FA rather than SA). This allows us to investigate the syn-
thesis of "valid by construction" operational architecture and to propose
in the future a coherent and automated toolset for the rigorous design
of real-time systems.
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Abstract Nowadays, no standard and universal definition of software architecture was ac-
cepted by all the community. Various points of view on different studies bring to
several approaches. These approaches focus on only one or two concerns such
as component interfaces specification, behavioral analysis or software reconfig-
uration. This paper argues that, in order to accrue the true benefits of software
architecture approaches, one may need to use an architecture centric approach
with a global reasoning: From software architecture design to software architec-
ture management to software architecture building, deployment and refinement.
However, these different concerns of a software architecture definition must be in
consistency. For this reason, we based our approach on architecture types that are
points of reference at each step of our reasoning. We offer with SafArchie Studio,
a first architecture centric approach based on three-view perspective and driven by
the component life cycle.

Keywords: Software Architecture, Tools

1. Introduction

Nowadays, industrial component platforms such as CCM[22], EJB[11] give
first means for assembling and deploying components on distributed environ-
ments. Academic approaches with ArchJava[2] or Fractal[7] provide more struc-
tural elements as composite or connector for precisely defining an abstract ar-
chitecture and transforming it on deployed and running code. However, facing
the difficulties to define correct and safety software architectures, more abstract
software architecture models were proposed. They are commonly gathered un-
der the label of ADL for Architecture Description Languages. They come with
powerful methods and tools of specification and analysis for high-level designs.

In other hand, since several years, software engineering community promotes
model based engineering. New industrial components platforms should allow
programmers to easily create distributed software by a composition of com-
ponents [13] [26]. Nevertheless the re-usability implied by this view seems to
be skewed. Platforms are in constant improvement and the re-usability is ac-
tually impossible. Therefore, the software engineering community should ab-
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stract essential concepts from the platforms. The OMG (Object Management
Group) tries to resolve this new challenge by MDA (Model Driven Architec-
ture) [25] approach. In this context, architecture languages become one of build-
ing steps mainstays. They define models and tools to build platforms indepen-
dent, reusable, safe software architecture.

We propose SafArchie, an architecture centric approach for helping archi-
tects, designer and developers in the composition of components at each step of
the life cycle of applications. Built from a set of models for putting in evidence
some properties according to the component life cycle, SafArchie Studio assists
the software architecture specification. We based our tool tool on architecture
types that we instantiate and deploy on abstract platform. SafArchie integrates
results from component frameworks and models based engineering in a power-
ful ergonomic tool. This tool aims to increase software architecture reasoning in
front of component based design and programming on platforms such as CCM,
ArchJava, or Fractal.

This paper follows the reasoning about building new software architecture.
The first section is an overview of SafArchie approach. It defines the three-view
perspective approach leaded by component life cycle. In the second section, we
present the design perspective based on architecture types. We propose a rea-
soning on this design and a new ArgoUML[27] diagram to create this specifica-
tion. Section 4 defines the deployment perspective, the first physical abstraction
model and the mapping to it. The end of section 4 specifies the execution per-
spective. Some next steps of this work and next features of the SafArchie studio
are defined. The section 5 presents related works on software architecture from
which we build SafArchie Studio. Finally, the last section gives a conclusion of
this work.

2. Overview of SafArchie approach

2.1 A three-view perspective approach

Software architecture defines component instances, their interfaces, their struc-
tures, their interactions and the mappings to hardware systems. It represents a
static view at a given moment. However, at the run-time, this architecture will
be dynamic [4]. For example, component instances and bindings can appear
and disappear. In ubiquitous computing domain, run-time environment can also
change in accordance with the context.

Defining architecture should consider all facets of the application life. Com-
ponent approaches provide lots of information in relation with the component
life cycle and this information should clarify the architecture. SafArchie works
on three-view perspectives depending on the component life cycle: Design per-
spective, deployment perspective, and run-time perspective. For each perspec-
tive, we define a meta-model for clarifying its concepts.

The design perspective defines architecture type by a set of constraints re-
spected by an architecture. These constraints represent invariants for software
architecture such as component interfaces, relations and interactions between
components, but also component structure and behavior specifications. From
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this architecture type, we check the structural and behavioral conformities be-
tween components constraints. Therefore Design perspective defines consistent
architecture types. By this way, architect guarantees architecture consistency.

The second perspective, called deployment perspective, ensures an initial po-
sition for a logical architecture on top of a physical architecture. For this per-
spective we need three models. The first one, the instance model (called logical
architecture) is a graph of connected component instances. The second one,
the physical architecture, consists of an abstract representation of physical plat-
forms. Finally the last one specifies the mapping of a logical architecture to an
abstract physical architecture.

Finally the last perspective, run-time perspective, consists of a supervision of
software architecture. This work still in progress builds framework to follow the
evolution of a software architecture at run-time.

SafArchie Studio is an extension of ArgoUML tool. We maintain the con-
sistency among the models thanks to a common abstract component model that
unifies the common definition and an architecture type model that helps in con-
formity check at each step of life cycle. We present this component model in the
next sub-section.

2.2 SafArchie common abstract component model
Our representation of a component and of relations between components is

closely related to ArchJava component model [1]. A component is a grey box
defined by its structure and its interfaces. Components can be composed and
must be as generic as possible for easily reusing in different contexts. They
communicate through ports by provided or required operations. A component is
defined by two parts. Firstly, the communication part represents the component
interfaces defined by a set of ports. Secondly, the internal part corresponds to
the component implementation. In the internal part, only public attributes are
visible, the component implementation component is hidden. A component can
only communicate with its environment through explicitly declared ports.

A port is an access point on the component. It represents a logical commu-
nication way. Each port defines two sets of operations, provided or required
operations.

An operation represents an action of a component. A provided operation can
be invoked by a client component. Conversely, the required operations can be
processed by a server component. They make explicit dependencies. These
dependencies are resolved at the composition time. Operations are defined like
methods in Object Oriented Programming (OOP) with a signature with name,
parameters, result, and exceptions. An operation can be released by a remote
procedure call or a sent message.

Finally, as in ArchJava or Fractal component models, our component model
is hierarchical. A component can be a composite or a primitive. A compos-
ite contains delegation ports, component children and bindings between these
component children. The ports of a composite are only delegated, i.e. they ref-
erence a component child port. The composite reifies the software architecture
configuration.
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3. Modelling software architecture types

In architecture definition, first steps of architect abstract global structures of
the future application by the definition of component assemblies. First, we de-
fine concept of architecture type for helping architect in its first design steps.
Second, we clarify this architecture by structural and behavioral contracts. There-
fore, checking contracts makes architecture safe. Finally, we integrate our ap-
proach in ArgoUML.

3.1 Type of architecture definition

As in type definition in programming language, an architecture type defines
a set of possible values that must be respected by software architectures. De-
fined constraints deal with component interfaces and identify relations and in-
teractions between these component interfaces. Therefore, an architecture type
represents a static view of a software architecture. It also clarifies component
structure or behavior specification. From these architecture types, we will check
the structural and behavioral compatibilities between components by set of iden-
tified invariants.

An architecture type is composed of six main elements: Component type,
composite type, bindings, port type, operation, and attribute (see Figure 1).

urt Type

ComponentTypi

Cardinality

Binding; 2 - " PopTyps

t
0 "

name { String

type : Any

Cpersttbrr

retumType; Any

PtevideOperation

Figure 1. Architecture type meta-model
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Designing a port type consists of identification of a set of operations that the
port should provide or require (see Figure 1). A port type corresponds to a set of
operation signatures and their gathering together is guided by the application de-
sign. Component type defines all port types of the component and the minimum
and maximum cardinalities for each one (see Figure 1).

Composite type also identifies all the component types that it should con-
tain and the minimum and maximum cardinalities for each one (see Figure 1).
It defines the interactions between these component types through the binding
concept. Then, a binding identifies a possible interaction between two port types
belonging to component types.

By this way, software architecture type is a set of structured constraints in
terms of composite type, component type, and port type. Each typed software
architecture should respect these constraints.

Example We illustrate our type model with an example describing the archi-
tecture type of a replicated calculator. This architecture type has two primitive
component types bound into one composite type (see Figure 2). The component
type A provides one service of calculator through a port type P. Each instance of
A could have only one port P. The specification defines the cardinality between
the component type A and the Port P.

The component type B is a proxy. It receives some requests and chooses the
provider for the service. It has two port types: (P,Q): the first to communicate
with the client, the second to interact with the service provider.

Finally, the composite type C has one binding and one delegated port type .
The composite environment communicates with component type B through this
latter. The binding models the communication capabilities between A and B.
The composite could have several instances of A but only one instance of B.

A
l * l

B 3-*--

o

Binding

Delegation

Component Type

Port Type

Figure 2. Architecture type example

3.2 Design software architecture by contracts

All the constraints defined by the composite type, the component type and
the port type are structural and architectural. With this framework we will assist
the components composition. For example, from an architecture type, we could
decide the binding of two port types, if all the operations provided by the first
port type are required by the other and vice-versa. However this type checking
often used in Object Oriented Programming has already shown its limits [15].
The compatibility between two operation prototypes could not guarantee their
correct use. That is why, in SafArchie, we add a visible part of a black box
component in order to simplify the components integration.
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provide Boolean withdraw(String clientID, Integer price)

Context Bank::Auth::withdraw(clientID:String,

price:Integer):Boolean

pre: price > 5

post: self.accountValue > 0

Figure 3. Pre and post condition example

These specification enrichments are commonly used in Design by Contract
software development techniques. They ensure high-quality software architec-
ture. They guarantee every component of a system lives up to its expectations
[20]. In SafArchie architecture type meta-model, we identify two contracts. The
first contract is a set of constraints on the operation, called assertion contracts.
It adds pre and post conditions in an operation to guarantee its correct using
context. The second contract, called behavioral contracts, specifies the external
behavior of a component type.

3.2.1 Assertion contracts.

In some case, an operation could be invoked and processed only if its con-
text is valid. The context of a component is described from attribute values,
parameter values but also architectural constraints like the presence or the lack
of a binding. An assertion is a boolean expression about the state of a software
system. In a valid software system, all assertions evaluate to true.

Architect can define two classes of assertion. First, preconditions define the
context that must hold before an operation can be invoked. They are evaluated
just before an operation execution. Precondition involves component state and
operation parameters. They specify obligations that a software client component
must meet before invoking a particular operation of the component. Second,
postconditions specify conditions that must hold after an operation completes.
Consequently, postconditions must be true after the operation execution. Post-
conditions on a provided operation involve the old system state, the new system
state, the operation parameters, and the operation's return value. Postconditions
on a required operation involve only the operation's return value. They define
the guarantees that a software component makes to its clients. If a postcondition
is violated, the supplier component does not work correctly.

For example, in a provided operation withdraw of component type Bank, we
can specify that the first parameter should be upper than 5. Therefore, if a client
asks a debit lower than five, an exception will be risen. Architects can also
define a postcondition to ensure that the Bank attribute, called accountValue,
will be always positive (see Figure 3).

3.2.2 Behavioral contracts.

The structural description of an architecture type does not allow a complete
efficient re-use. Indeed, the component integration requires a well understand-
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A = (p.?request —• computation —> p. (reply —>• A) + {p.?request,
p . ! reply}.

B = (p.?request —> q. !request —•»• q.?reply —• p.'.reply —• B) +
{p.?request, p.(reply, q.(request, q.?reply}.

• ||C - (A || B) /{p /q}e{p} .

Figure 4. Behavioral specification example

ing of each component's role. The structural information are necessary but in-
sufficient to improve software architecture understanding tasks. In this section,
we define our architecture type extension that adds behavioral information on
component types. These additional details are gathered in behavioral contract.
It describes the messages scheduling of a component type with its environment.

The building of new formal languages to describe component external behav-
ior is a specific part of software architecture research area. In SafArchie Studio,
we integrate existing works. External component types behavior are specified
with FSP language [18]. This language is already used in Darwin ADL[17]. It
is well-adapted with hierarchical architecture model.

The external behavior of a component type is described in term of sequences
of exchanged messages with its environment. The two kinds of interaction (Re-
mote Procedure Call (RPC) and messages) are described by asynchronous mes-
sages. These messages can be sent or received by the component. Then, in a
behavioral contract, one or two messages represents each operation.

A component type behavior is defined as finite state processes in FSP using
action prefix "—>", choice "|", and recursion. Let ?x a received message and !p
a sent message, Ix —>\p defines a process that initially waits the message x and
then sends message p.

A composite type process is the parallel composition of their contained com-
ponent behaviors. Communication is achieved through synchronization of shared
actions. The FSP hiding operator @ captures the concept of delegated port in
SafArchie. The behavior of every composite is computed from that of its sub-
components with reachability analysis. Messages that are not in one composite
interface are hidden and the behavior is minimized with respect to observational
equivalence^ 1]. (see [19] and section 3.3 for more details).

Take the example of a replicated calculator described in section 1. The behav-
ior of a component typed A is simple. When it receives a request, it computes
the calculus and replies a result.

The behavior of a component typed B is a proxy behavior. When it receives
a request, it forwards it to a component typed A and waits the reply to send it.
The composition identifies a synchronization between the messages belonging
to accept and the messages belonging to forward (see behavioral specification in
Figure 4). The behavioral specification identifies the message with the name of
its port (P, or Q) and the name of its operation (accept, reply). The composition
result gives a simple external behavior of a composite typed C. It can receive a
request and it can reply a result.



92 Architecture Description Languages

3.3 Towards a safe software architecture type

Each architecture type should be consistent in order to build safe software
architecture. From three sources of information, which are architecture types,
assertion contracts and behavioral contracts, we check the architecture type con-
sistency.

Structural reasoning about an architecture type
From the architecture type, we link several checking mechanisms. The first step
studies the architecture type without the contracts.

First, we check that software architecture type is being carried out in accor-
dance with the software architecture type meta-model presented in Figure 1.

Second, we verify the assembly by checking the compatibility of two bound
port types. Two port types are compatible if all the provided operations of one
port type have a compatible required operation in the other port type. More-
over, the compatibility between operations consists in checking their signatures
compatibility.

Finally we check the possible cardinality violation. Indeed each binding de-
clared in a composite type specifies a possible link between two ports. The
cardinality analysis compares the two couples of cardinality: (component type
child cardinality, port type cardinality). A couple (1,1) could be safely bound
only with a couple (1,1). All other bindings could create cardinality violation.

Reasoning about assertion contracts

The second step of analysis checks the assertion contracts defined in OCL
(Object Constraint Language) [23] in an operation context (see example in sec-
tion 3.2.1). First, we consider well-formed OCL expressions by verifying the
syntax and the navigation expressions in accordance with the architecture type
meta-model. For example, the post condition in Figure 3 will be valid if the
component has an attribute named accountValue that can be compared to an
integer value.

Second, OCL expression analyzer verifies compatibility between two oper-
ation assertion contracts belonging to two bound port types. Indeed assertion
contracts can be viewed as subtype definition for parameters. OCL analyzer
checks the covariance and contravariance respect for these sub-types. For exam-
ple, in Figure 3, if the required operation defines a precondition with a withdraw
lower than 4, the OCL expression is true on the first check step, but the second
pass detects an incompatibility between these two assertion contracts.

Reasoning about behavioral contracts

Finally, we work on behavioral contracts. From an architecture type, there
exists an infinity of valid software architectures instances. Therefore, we can
not analyze all the possible behaviors. We only check the behavior consistency
from only one software architecture behavior specification. This specification is
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defined from the architecture type with only one instantiation of each composite
type, component type, and port type with its minimum cardinality. From each
binding between two port types, we create a connection between two ports. We
generate FSP specification relating to this generated software architecture be-
havior.

LTS A tool checks this specification [9] with Compositional Reachability Anal-
ysis (CRA). It performs an exhaustive search of the state space of the Label
Transition System model. This LTS model corresponds to the behavior specifi-
cation. More specifically, given the structural architecture of a system, and the
behavioral contracts of the component types, the behavior of the system is com-
puted for analysis in steps. The behavior of every composite type is computed
from its sub-components FSP specification with reachability analysis. Actions
without communication interface are hidden. The behavior is minimized with
respect to observational equivalence [21].

Due to the automatic generation of only one behavioral specification, the
behavioral analysis is incomplete. We could only conclude when the analysis
detects a problem that the architecture type is invalid. However a non failure
detection does not mean the behavioral safety of architecture type. New ver-
ifications should be done at the deployment perspective (see section 4). If a
consistency mistake is detected during a checking step, architect can not define
a logical model (see section 4.2) instance of this architecture type.

3.4 A new diagram in ArgoUML for building safe software
architecture type

Building new plugin in ArgoUML [27] is easy and well-documented. More-
over ArgoUML environment is a free, well-known, multi-platforms software
engineering tool. Finally ArgoUML add the concept of design critics[24] to
assist the software designer. Therefore, we define our design perspective pro-
totype of SafArchie Studio as a plugin in ArgoUML in accordance with our
meta-model. This plugin provides graphical design of architecture types. By
this way, architects have a global tree view of their architecture type. They can
edit all their architecture type properties inside simple panels. They can load
or save their architecture types through XML files defined with a public XML
schema. SafArchie Studio type perspective checks architecture type consistency
and creates a global report for an architecture type.

On the left side of the figure 5, a graphical tree represents the architecture
type hierarchy. Architect uses it for browsing or editing an architecture type.
For each element, contextual menu and drag and drop actions improve the tool
ergonomy.

On the right side, the second frame provides a graphical tool to manipulate an
architecture type. An architecture type is built from component types, composite
types, port types and bindings between port types. We manage one graphical
layer for each composite content. Only one layer can be edited at one moment.
However we could have a reduced graphical view of the content of a composite
type. The navigation between the graphical layers is automatic thanks to the



94 Architecture Description Languages

Figure 5. Saf Archie Studio snapshot

graphical tree. When choosing an element in the tree, you immediately see its
graphical layer.

The selection of an object in the tree panel or in the graphical panel activates
the property panel (bottom right panel in Figure 5) of the target element. From
it, architect can edit internal properties of each architecture type element.

The architecture type meta-model is described in UML (in Figure 1) but also
with a XML schema. Architect can save an architecture type in a XML represen-
tation. XML schema corresponds to the grammar of the SafArchie Architecture
Type Description Language.

An architect can automatically check an architecture type definition. Sa-
fArchie Studio checks the structure (described in section 3.3) but also assertion
contracts validity and conformity (described in section 3.3) with two different
tools. The first one, already used in ArgoUML, is an OCL library[14] for the
checking of well-formed OCL navigation expression. We develop a facade pat-
tern for our architecture type meta-model in order to use it. The second is an
internal tool based on CIAO prolog[8]. It checks the covariance and contravari-
ance principles between bound operations that are enriched with assertion con-
tracts.

Finally, to verify the compatibility between behavioral contracts, SafArchie
Studio generates global system behavior specification (as described in section
3.3), and starts the LTSA external model checker to verify the consistency of
this specification.
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4. Deployment of a typed software architecture on a
distributed environment

In SafArchie, we decompose our approach in several points of view. In sec-
tion 3, we presented the design perspective of our approach for building archi-
tecture types. They define a set of respected invariants in a design stage. In
this section, a second perspective instantiates a typed software architecture and
deploys it on a physical environment.

4.1 A three-step deployment step

An architecture type defines a set of possible values (i.e. infinity of possible
architecture instances). An architecture instance is a connected graph of com-
ponent instances through their ports. Each component instance and its relations
should be conformed to its referenced architecture type. We call this instance
model: logical software architecture.

Software architecture scope is larger than this model of interconnected com-
ponent instances. This component based software architecture represents a static
view of component instances deployed on a physical architecture at one mo-
ment. In SafArchie, the physical model is an abstract view of hosts configura-
tion, hosts capacities and network topology. This abstract view of physical plat-
forms called Physical Architecture is light. We only model distributed nodes,
their interconnection and some information about their based software as mid-
dleware and network protocols. The last step of deployment perspective consists
in mapping the logical software architecture on an abstract physical architecture.

4.2 Logical software architecture

Logical software architectures are represented by a graph of component in-
stances connected through their ports. Each logical architecture instance must
conform to its referenced architecture type. Therefore, ports, components, or
composites are typed by an existing port type, component type, or composite
type of architecture type. Besides, any relation between these elements should
be declared in the architecture type. Finally all port connection must be defined
in the binding description between these two port types.

Example Let's take the example described in section 1. A valid software ar-
chitecture could be the following (see Figure 6). The replicated calculator has
three replicas (al, a2, a3). Each one is connected to a component Proxy (bl)
through ports. Proxy can receive requests from the environment. It delegates
the computation to a replica.

In SafArchie Studio, we add a second diagram for defining logical software
architecture. As the first diagram, it is composed of four panels: A panel for
global tree-view of software architecture, a panel for graphical software archi-
tecture building, a panel for adding critics on this specification and a set of
property panels for each logical architecture element.
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al:A

a2:A

a3:A

(q3:Q

J
c:C

b:B ^

Figure 6. Replicated calculator architecture

From a logical software architecture definition, we could directly map its
model to non distributed platform as ArchJava [2] or Julia, the implementa-
tion of Fractal Model [7]. SafArchie Studio transforms automatically its logi-
cal architecture XML representation and architecture type XML representation
towards XML Fractal ADL. On the other hand, ArchJava projection is man-
ual. SafArchie Studio creates an ArchJava file specification for each component
specification.

4.3 Abstract physical architecture

For our model of physical architecture, we choose the highest abstraction
level possible. The abstract physical architecture model contains five main ele-
ments: Computing node, communication node, communication interface, com-
munication link, and route . They represent hosts configuration, hosts capacities
and network topology.

A computing node communicates with its environment through communica-
tion interfaces. It can contain software components. By default, we consider
that it has an appropriate middleware. A software component can be deployed,
executed and managed on it. However, architects can specify the middleware
properties.

A communication node also communicates with its environment through com-
munication interfaces. It could not contain any software component. But an ar-
chitect could declare route between two of its own communication interfaces. A
route specifies that all messages that arrive into a communication interface are
forwarded towards the "routed" communication interface.

Finally two communication interfaces could be bound. The communication
link represents the ability of a communication interface to send or receive a
message to or from an other communication interface. The communication link
can only bind two communication interfaces.

Therefore, in SafArchie studio, we define a diagram for modelling the net-
work topology.
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4.4 Mapping a logical architecture to a physical
architecture

Starting from a logical architecture, this step consists in mapping the compo-
nent or composite instances onto the computing nodes of the physical architec-
ture.

When architect finishes his/her mapping, he/she can check the accordance
of the connection declared in the logical model architecture with the communi-
cation link declared in the physical architecture. For each connection, a route
must exist between the computing nodes that contain the connected component
instances.

4.5 Next features of Saf Archie Studio: Supervision of a
software architecture

The next step consists in building the run-time perspective. The goals of this
perspective consist in following the software architecture evolution. This work
is still in progress. The software architecture supervision could be synchronous
or asynchronous. In synchronous mode, we follow the architecture evolution
in debug mode. Each architecture evolution should be in accordance with the
architecture type (creation of component instances or connection). A watch
dog component will be in charge of this checking task. In asynchronous mode,
we follow the architecture evolution in order to keep a global view of software
architecture. But the architecture model is only notified of the evolution, it can
not interfere with it.

In other hands, lots of work should be done to add the support of evolution in
physical architectures. This feature is essential to use Saf Archie in an ubiquitous
computing context where the physical topology changes.

5. Related work

Nowadays, most of industrial projects use informal notations (boxes and ar-
rows) for specifying software architecture. These notations are ambiguous, im-
precise, unanalyzable. Due to the lack of tools, software architecture manage-
ment is expensive and time consuming. On the other hand, software architec-
ture research community focuses on building formal notations in order to define
structure and behavior of software architecture. They are recognized in Archi-
tecture Description Languages (ADL) domain. An ideal architectural descrip-
tion language would provide[12]: A composition model that provides operators
for composing existent libraries of components and connectors. An abstraction
level for defining components and connectors with only useful details putting in
evidence some properties. A potential reusability for existing components, con-
nectors, and whole architectures in order to develop new components, connec-
tors and system architectures. Finally a set of analysis for validate architectural
descriptions.

Currently, no ADL or architecture software tool responds to all these goals.
In this section, instead of a catalog of ADL characteristics, we focus on three
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significant directions for software architecture definitions. SafArchie Studio is
highly inspired by the main characteristics of these works: the specification
and the analysis of dynamic distributed software behavior for Darwin[17] or
Wright[3], the strong link with the implementation for ArchJava[2] or Fractal
[7], and the building of architecture-driven software development environment
forArchStudio[10].

Some ADLs, such as Wright[3] and Darwin[17], support the specification
and analysis of relatively complex component communication protocols. They
provide formal basis for architectural description. They can be used to provide
a precise, abstract, meaning to an architectural specification and to analyze a
component assembly.

ADLs as Fractal[7] or ArchJava[2] are implementation oriented. Lots of ex-
isting approaches decouple implementation code from architecture. ArchJava
is an extension to Java that seamlessly unifies software architecture with imple-
mentation, using a type system to ensure that the implementation conforms to
architectural constraints. Fractal is generic software composition framework.
As ArchJava, it is based on a hierarchical component model. Components can
be nested in composite components - hence the "Fractal" name. Besides, this
model is reflexive, i.e. components have full introspection and intercession ca-
pabilities. Finally, the Fractal component model is language independent, and
fully modular and extensible. Fractal provides an XML based Architecture De-
scription Language. Contrary to Darwin or Wright, ArchJava and Fractal ADL
provide no behavior specification. The composition analysis is only structural.
However, the abstract Fractal's or ArchJava's component models are efficient
and adapted for programming step. In SafArchie, we follow their models to keep
a strong link between the specification and the component platform. Moreover,
we add a physical platform specification with the deployment perspective.

On the fringes of ADLs, other projects aim at improving the use of software
architecture concepts in software engineering. For example, ArchStudio[10]
mainly developed by the Institute for Software Research at the University of
California, Irvine, is an architecture-driven software development environment.
Indeed, while most development environments, like Microsoft Visual Studio and
IBM Eclipse are code-driven development environments, ArchStudio focuses on
software development from the perspective of software architecture.

SafArchie Studio is higly inspired by these three aproaches. It provides a
complete tool suite to build, analyse and deploy a software architecture and to
transform ADLs in an effective vehicle for communication and analysis of a
software system.

6. Conclusion

This paper highlights our research in architectural modelling, refinement, and
consistency checking. As part of architectural modelling, we define a three-view
approach. The first specifies the software architecture type. It defines invariant
properties for a software architecture. From this structural and behavioral spec-
ification, we analyze the component assembly. The second perspective specifies
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a typed software architecture, i.e a component graph deployed on an abstract
physical architecture. Finally, the run-time perspective gives administrator a
global view of his/her system for the architectural supervision. For consistency
among the different views, we use SafArchie's ability to provide a common
component baseline to link those perspectives.

For the moment, we have tooled many of the concepts discussed in this paper
and created a tool suite: SafArchie Studio. This tool is a set of new extensions
for ArgoUML. It gives programmers, administrators, or designer an architec-
tural view of software with different perspectives.

SafArchie approach is also the foundation for an other project: TranSAT[5]
[6] (Transformation of Software ArchiTecture). Indeed, most of the time, the
software architecture models are unsuitable for improving features of software
systems. So, adding new concerns in software architecture is often a difficult
and manual operation for architect. Moreover, the rules of integration are not
described, saved, or analyzed. TranSAT focuses on these lacks of software ar-
chitecture models. It proposes a framework for designing software architecture
with step by step refinements: from an architecture which contains only business
concern to a global architecture which contains business and technical concerns.
The main idea of this project is inspired from Aspect Oriented Software Devel-
opment (AOSD) [16] concepts.

TranSAT ensures three main features: It defines a mechanism to add new
concerns in software architecture specification. It provides a description model
for software architecture which saves the integration rules of a specific concern.
It specifies rules which guarantee the correct integration of a technical concern
inside a business model. Associated with TranSAT, SafArchie provides an ar-
chitecture centric approach to build consistent software step by step.
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ENHANCING THE ROLE OF INTERFACES IN
SOFTWARE ARCHITECTURE DESCRIPTION
LANGUAGES (ADLS)

Seamus Galvin, J.J. Collins, Chris Exton and Finbar McGurren
Software Architecture Evolution (SAE) Group, Dept. of Computer Science and Information
Systems, University of Limerick, Limerick, Ireland

Abstract: One of the key reasons why ADLs are yet to be adopted commercially on a
large scale is due to shortcomings in their ability to describe adequate interface
specifications. An interface specification that is vague, lacking in detail, too
style focused or too language-specific results in an ADL description with a
restricted scope of use. This paper demonstrates how an XML-based ADL
(xADL 2.0) can be extended to model detailed, meaningful interface
specifications, and is used as part of a simple prototype to demonstrate how
they form an integral part of an architectural description, paying particular
attention to interface-level constraints. The approach is based on the principle
that an ADL's interface modeling features should provide sufficient flexibility
to allow them to reflect stakeholder's interface concerns at all stages in the
lifecycle.

Key words: Software Architecture; ADLs; interface specification; interface constraints.

1. INTRODUCTION

Architecture Description Languages (ADLs) provide a structured means
of representing a system's architecture that is both human and machine-
readable, and have been proposed as a modeling notation to provide support
for some of the problems experienced in architecture-based development [1].
However, the diverse nature of existing ADLs indicates a lack of clarity with
respect to the kind of language an ADL should be and how it should be used.
Some ADLs have a narrow usage scope, providing highly specific support
during the early stages of architectural analysis, while others perceive
varying degrees of relationship between architectural description and the
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underlying implementation. Also, it is still unclear how ADLs and their
associated descriptions might interrelate with other design and runtime
artifacts, such as requirements and domain models, modeling tools,
implementation platforms and execution engines. The lack of such
relationships minimizes the ADL's potential.

While these realities present a broad range of problems, a fundamental
requirement is the provision of adequate interface modeling capabilities. An
accurate interface description is an essential part of an architectural
specification, and a key requirement of architectural stakeholders at all
stages in the project lifecycle [2]. It is pivotal to an ADL's malleability as
constrained and monolithic interface support results in a limited ADL. Most
importantly, it is required to establish an accurate relationship between
architectural description and the underlying implementation, allowing the
ADL to support maintainable and evolvable software.

The remainder of the paper is summarised as follows. Sections 2 and 3
provide a brief overview of ADLs, the latter paying attention to their diverse
approaches to supporting interface description. Section 4 discusses interface
modeling concerns in architectural documentation. Section 5 discusses two
approaches to defining an ADL meta-language for interface description
using the XML-Schema standard. Section 6 discusses the application of the
second approach to a suitable ADL, section 7 demonstrates an example of its
application and section 8 offers conclusions and discusses future work.

2. OVERVIEW OF PROMINENT ADLS

The goal of achieving architecture-driven development and architecture-
centric evolution presents many diverse challenges, and this is reflected in
the ADLs that have been developed throughout the research community,
some of which are listed in Table 1. Despite the lack of a common,
universally acceptable definition of software architecture [3], all adopt a
relatively standard approach to modeling basic architectural structure. Most
recognise an architecture as being a set of components (or modules) whose
interactions are represented as connectors [1]. Relationships between
components and connectors are represented as links (or attachments). Some
ADLs allow components to be directly linked to one another; others require
them to communicate via connectors, while some allow direct links between
connectors. ADLs allow these basic architectural elements to be refined to
various degrees, thus allowing the notion of a sub-architecture to be
modelled. They also attempt to distinguish between template definitions of
architectural elements and instances of those elements that are defined in
actual instantiations of a particular architecture.
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While there is a general conformance to this core set of architectural
concepts, there is significant diversity in their detailed ADL features, e.g.
naming conventions and keywords used, their scope of concern, and their
associated technologies and tools. For example, Darwin, Wright and Rapide
have focused on static and dynamic analysis of abstract architectural
descriptions; Aesop has investigated the customisation of architectural
design environments; Unicon has identified and implemented commonly
occurring connector abstractions; Arch Java investigates communication
integrity; SOFA highlights the relationship between architecture and
component-based middleware; xADL aims to support rapid prototyping and
tailoring to assist ADL research, and ACME and ADML strive for ADL
standards and recognition. Some of these ADLs have a narrow scope of use,
providing high-level, conceptual support during the early stages of
architectural analysis. Others perceive a relationship between the
architectural description and the underlying implementation. The nature of
this relationship varies; some ADLs provide code generation facilities, while
others aim to represent the architecture explicitly in the underlying system.
Both conceptual and more concrete ADLs have yet to receive widespread
acceptance. This indicates a difficulty in providing an architectural language
that is sufficiently conceptual to support high-level abstractions, yet
simultaneously capable of supporting and governing the code level in an
acceptable manner. Important issues still remain largely unaddressed by
ADL research - these include the lack of explicit support for the definition
of architectural viewpoints [4] and the insufficient emphasis on the
relationship between ADLs and other developmental and runtime artefacts
such as requirements models, design models, domain models, modelling
tools and languages, implementation platforms and execution engines.

3. ADL SUPPORT FOR MODELING INTERFACES

An overview of the interface modeling characteristics of a broad range of
existing ADLs (including UML) is given in Table 1. Different keywords are
used, e.g. ports, roles, players, interfaces. They are difficult to compare and
categorise, as ADL interface modeling characteristics are often influenced
by their primary intended use. For example, if the ADL is geared for formal
analysis, then the interface modeling support is influenced by the formal
methods used (e.g. Wright, Darwin, Rapide), or if an ADL is closely aligned
to a particular architectural style or underlying platform, style or platform
specific interface features are provided. This is sufficient to fulfill the ADL's
primary intent, at the expense of constraining its capability in other respects.
ADLs and modeling notations aiming for a broader usage scope allow
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detailed interface features to be represented as user-defined properties (e.g.
ACME and UML). This allows any interface feature to be modeled, but the
language's native tools cannot interpret them, leaving this task to the ADL
user, and hindering the possibility of a more standardized representation.
Also, as this approach does not provide specific syntax for the features
within the core ADL, it is more difficult to clarify feature semantics.

Table 1. ADL support for modeling interfaces
ADL
Aesop
[5]

ACME
[61
ADML
[71
Wright
[8]

Darwin
[9]

Rapide
[10]

xADL 2.0
[ill
Unicon
[12]

ArchJava
[13]

C2SADL
[14]
UML

Type
Implementation

independent

Implementation
independent

Implementation
independent

Implementation
independent

Implementation
independent

Implementation
independent

Implementation
constraining

Implementation
constraining

Implementation
constraining

Implementation
constraining

Implementation
independent

Keyword
Ports and

Roles

Ports and
Roles

Ports and
Roles

Ports and
Roles

Interface

Interface

Interface

Players and
Roles

Roles

Interface

Interface

Key Features
Allows ports/roles to be
associated with a style

Allows ports/roles to be
associated with a style

XML version of ACME -
same as above

Uses CSP notation to
capture interaction

semantics
Interfaces can contain
provides and requires
services, focuses on
bindings between

interfaces specified in pi-
calculus

Can model synchronous
and asynchronous features,
advanced parameterization

and subtyping possible
C2-specific features

Players/roles associated
with specific component

and connector types
Java-like syntax, ports can

have provides, requires,
broadcast features

Can model C2-specific
provides/requires features

"Lollipop" or rectangular
notation can be used

Semantic Modeling
Semantics associated

with certain
architectural styles

User-defined
properties

Same as ACME

Port/Role behaviour
can be modeled in CSP

Supports
parameterization and

subtyping, portal
semantics added using

tags

Poset (event) patterns
characterised using

behaviour and
constraint declarations
C2-specific semantics

Specific properties
associated with port

and role types
Provides features can

include a Java
implementation

C2-specific semantics

Semantics modeled
using properties and

tagged values

4. INTERFACE CONCERNS IN ARCHITECTURAL
DOCUMENTATION

In order to develop adequate support for the high-level, platform
independent modeling of interfaces during the early stages of the project
lifecycle, one should take cognizance of the features found in the interface
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documentation of architectural specifications. Bachmann et al. suggest a
standard organization for architecture-level interface documentation [2]:
1. Identity - This identification may include versioning information.
2. Resources provided - This includes syntactic (e.g. name, arguments etc.)

and semantic information (i.e. the implications of using the resource).
3. Data types - user-defined data types declared on the interface.
4. Errors raised by interface resources.
5. Configuration information - This might involve the passing of parameters

to the interface.
6. Quality attribute characteristics.
7. What the associated element requires from its environment.
8. Rationale and design issues - This may be a narrative description of the

motivation/considerations behind the interface's design.
9. Usage guide - This allows stakeholders to gain a better view of the

interface's overall role. This can be achieved by identifying and depicting
resource usage scenarios that the architect expects to repeatedly occur.

10. Exceptions - These could be errors on the part of the actor invoking the
resource, or errors that occur due to software or hardware events that
result in a violation in the element's assumptions about its environment.

Like all aspects of architectural documentation, some of the discussed
features are structured and should be carried through and directly reflected in
design and implementation. Other information is prose based and is intended
to enhance the understanding of the structured information. The structured
architectural information would ultimately be much more useful and
accurate if it was a part of the system, rather than being part of the associated
documentation. Therefore, the ADL's language features should be sufficient
to allow the modelling of the structured information by providing explicit
syntax for relevant features, and should also support the formal or semi-
formal specification of features where required (in order to support the latter,
it should facilitate more than one formal notation if required). Also, ADL
modelling tools should allow this structured information to be annotated
with relevant prose-based information.

5. TOWARDS AN ADL META-LANGUAGE FOR
INTERFACE DESCRIPTION

A suitable ADL interface meta-language should facilitate the definition
of abstract, language-independent interfaces and should also support their
transition into concrete, language-specific ones. Also, it should be extensible
- this is required to support the diversity in existing ADLs, architectural
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documentation, development platforms, and the many different, and possibly
unanticipated ADL usage contexts. Also, the approach should reflect the
commonality that exists between interface modeling features of the different
platforms. This will allow each platform's interface modeling requirements
to be defined in terms of a common format and will ease the future addition
of features related to other, possibly newer platforms. It will also facilitate
the definition of structured mappings between language-independent and
language-specific interfaces, a trait which is advocated by the Model Driven
Architecture (MDA)[15]. This section discusses the potential of two possible
approaches to providing a suitable interface meta-language for ADLs. The
experimentation discussed in this section is applied to the interface features
of Java, C# and OMG's IDL3, the latter a part of the CORBA Component
Model (CCM). To ease the application and extension of the approaches, both
have been defined using the XML-Schema standard.

5.1 First approach - generic language-independent
schema and language-specific extensions

The first candidate approach is based on the premise that the common, or
overlapping features of language-specific interface specifications provide a
basis from which an ADL's language-independent interface features can be
built. Their specific, differing features act as a basis for refinement in
detailed design. For example, all of them exhibit notions of identity,
resources provided and input/return parameters. Most of them allow
properties or constants to be defined - these can be primitive or user-defined.
However, while they allow syntax to be specified unambiguously, they
generally do not support the specification of resource semantics [16], a void
which could be addressed by an ADL.

To investigate the potential of this approach, the overlapping interface
modeling features of Java, C# and IDL3 were identified and represented in
an XML-Schema as complex types. This provided the basis for the
language-independent interface description. Based on the language-
independent schema in the study, their differing features were then modeled
as separate schema complex types. Each of these types used the XML-
Schema extension capabilities to extend the language-independent complex
types. To demonstrate the potential for modeling semantics, the generic
schema also contains features for specifying design-by-contract [17]
constraints. The relationship between the language-independent and
language-specific schemata for this experiment is shown in Figure 1. The
language-independent schema contains three nested complex types that
support the modeling of optional and mandatory features, including interface
identity, references to extended interfaces, preconditions, postconditions,
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invariants, operation names, and input/return parameters. The three
language-specific schemata contain specialist features outside this generic
set. For example, the Java specific complex types (JavalnterfaceDefinition
JavalnterfaceBody and JavalnputParam) contain the AccessType feature for
optionally specifying the interface's accessibility (i.e. public, private,
protected etc.) and features for constant declarations, references to
exceptions, inner interface declarations and inner class declarations. In a
similar fashion, C# interface specifics are represented in
C_SharpInterfaceDefmition, C_SharpInterfaceBody and
C_SharpInputParam, and IDL3 specifics in CCMInterfaceBody, and
CCMInputParam. C# specific features include attributes, access types,
properties, indexers, and events and support for specifying input parameters
as being of type value, output, reference or array, while IDL3 specific
features include events, constants, types, attributes and exceptions, and also
support for specifying input parameters as 'in', 'out' or 'inout'.

«complexType»
InterfaceOefinifion

Identifier 1..1

Extends 0..1

«complexType»
InterfaceBoty

For each method signature
ReturnParam 1 ..1
OperationName 0..1
InputParam 0,.»
Precondition 0..*
Postcondition 0,.*

«complexType»
InputParam

ParamName 1 ..1
ParamType 1 ..1

«complexType»
JavalnputParam

passingTypei..!

Figure 1. Conceptual overview of first approach - interface features of Java, C# and IDL3.
Common features are represented in the language-independent schema, differing features are

modeled in extension schemata.

The language-independent schema is a good representation of the main
interface features in commonly used programming languages and
middleware technologies, but it has shortcomings that hinder its potential to
support all of the previously discussed guidelines. First, the approach does
not support the establishment of a stable boundary between the sets of
features contained in the language-independent and language-specific levels.
Most notably, the set of language-independent features depicted in Figure 1
would become smaller if more interface examples from other programming
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languages and middleware technologies were factored into the approach.
Also, as the features contained in the language-independent interface are
directly based on those in language-specific interfaces, changing it in
response to syntactic changes in platform-specific interface modeling
features, or to accommodate new language-specific platforms would be
cumbersome. The approach supports language-specific concerns well, but its
ability to support language-independent concerns is restricted by its narrow
feature set, which restricts its ability to extensively support the criteria for
architectural documentation in Section 4. The narrow language-independent
feature set would also restrict its ability to support the simulation and
analysis of language-independent architectural models at an early stage in
the lifecycle, like other ADLs such as Rapide. Also, the schema layout in the
approach is rather unintuitive, making associated tool support more difficult
to construct.

5.2 Second approach - core set of feature declarations

The second approach involves the definition of a broad set of individual
feature declarations and their use as the basis for constructing the language-
independent and language-specific schemata (Figure 2). It consists of three
parts - the first being the core set of feature declarations, the second part
being a language-independent schema that is defined using the core feature
declarations, and the third part which facilitates the definition of language-
specific interface schemata. A language-specific schema may use features
from the core set as a basis for definition, and may additionally define
exclusive features to represent interface features that are not supported by
the core set.

Feature declarations (Language Independent ' "

000 0 00
000 000
000 0 00
mapping/translation
between schemata

Language Specific

0 0 0
0 (New!

Figure 2. Conceptual view of interface model

As interface descriptions based on the schemata are defined in XML, XSL
stylesheets could be used to transform language-independent interface
descriptions into language-specific ones, and/or to generate code if required.
Some of the defined language-independent features are also explicitly
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represented in corresponding language-specific schemata (e.g.
InterfaceName, Extendedlnterface, ResourceDeclaration and
ResourceName). Other language-independent features may be realised in the
implementation of an element that implements the interface at a language-
specific level, rather than being explicitly represented in the language-
specific interface. For example, the language-independent schema in Figure
3 contains features for modeling the configuration parameters of an
interface, but the Java specific interface schema does not contain this feature.
Instead, a Java implementation might represent the configuration parameters
in the constructor of a class that implements a corresponding Java interface.
In this case, a translation could generate corresponding code outside the
ADL's scope of description if a particular usage context required it.

Table 2. Core types in interface model

Feature
AccessType
Array
AttributeDeclaration

ConfigParam

ConstantDeclaration

Enum
Event

Exception

ExceptionRef

Extendedlnterface

InOutParam

InParam

InterfaceName

Invariant

I_OptParam

LRefParam

OutParam

Overview of Semantics
Represents the accessibility scope of the interface.
Represents a CORBA-like array declaration on an interface.
Represents a CORBA-like attribute declaration - attributes indicate the
variables in an element that are accessible to clients.
Facilitates the configuration of elements through configuration parameters
(e.g. specification of size of data structure element that implements
interface).
Represents the declaration of a CORBA-like constant declaration on an
interface.
Represents a CORBA-like enumerated type declaration .
Represents an event declaration. Elements that implement the interface
will either publish the event or subscribe to it.
Represents the specification of any exceptions that can be raised by
resources declared in the interface.
Represents any references to exceptions that may be made in an interface-
level resource declaration.
Represents a reference to an interface that is extended by this interface.
ADLs and platforms generally allow an interface to extend multiple
interfaces.
Represents an 'inout' parameter which combines value and return
parameters, allowing a calling method to pass and receive a value.
Represents a value (or input) parameter. Parameter passed by method
caller (actual parameter) is copied into the parameter used by the called
method (formal parameter) when the method is invoked.
Represents the identity of the interface - may also include versioning
information.
Represents specification of interface invariants, i.e. constraints enforced
for all elements that implement the interface.
Represents the optional specification of a formal parameter. Implicitly
supported by some programming languages in the form of variable length
arrays. However, in the context of documenting an architecture's
interfaces, one may prefer to represent optional parameters explicitly.
Represents a reference parameter - address of formal parameter is the
same as actual parameter. Subtle difference between reference and result
parameters is that any changes to the formal parameter immediately affect
the actual parameter.
Represents a result (or output) parameter. Value of formal parameter is
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Feature

O_RetParam
Postcondition

Precondition

ResourceDeclaration

ResourceName
String
Struct

Overview of Semantics
copied into the actual parameter when the procedure returns.
Represents a return parameter returned as a function result.
Represents a postcondition of a resource, i.e. a description of the effects of
that operation on its parameters and element state [18].
Represents a precondition of a resource, i.e. a definition of the situations
under which a postcondition will apply [18].
Represents the amalgamation of information for an interface resource -
ResourceName, various types of resource parameter, preconditions,
postconditions, references to exceptions etc.
Identify of an interface resource.
Represents aCORBA-like string declaration.
Represents aCORBA-like struct declaration.

Hnvokelnterface-

«ch iice»
Langlndlnterface-

— name:lnterfaceName1..1
— configParamiConigPsram
-exlends:Extendedlnterfac«O..*
— resourceDeclaration:Resource€*edaration 0.
— invariant:Invariant 0. . *
— exception:Exception 0..*
— enum:EnumDeclaration 0..*
-s t r ing:St r ingO. . *
-s t rucfcStructO. .*
— constantDeclaratioreConslanlDeciaration Q.J

— attributeDedaration:AttributeDeclaration 0..*
— Array:Array 0..*

LANGUAGE
caHByVal:lnParam1..1 WDEPENDEHT SCHEMA
caUByRef:OutParam1..1
callByVal_RetByRef:lnOutParam 1 . .1
refParamJ RefParam 1..1
optionaParam: l_OptPa r a m 1 ..1

I |—returnPararrcOJtetParam 1 ..1
—preCondftion:PreCondition 0..*

M—-postConditiorcPostCondition 0..*
—exceptionRef:ExceptionRef 0. .*
I—inputParamO..*^-]

«choide»i—callByVafclnParam 1 ..1
—callByRef:OutParam1..1

'——cal lByVa l RetByRef:lnOutParam 1..1
—optionalPararrcl OptParam 1 ..1
1— refParam:! RefParam 1 ..1

-eventlnterface event:Event 0..* eventSignature 0..*

Figure 3. Language-independent interface schema

The selection of core interface feature types in Table 2 are influenced by
a range of various sources, including the taxonomy in Section 4, Corba IDL,
Java, C# and Visual Basic. Some of the features are a fundamental part of
most linguistic approaches to modeling interfaces, for example,
InterfaceName, Extendedlnterface, ResourceDeclaration, ResourceName
and O_RetParam. CORBA IDL also has additional interface features that are
intended to epitomize a broad set of language-specific features, and some of
them are also suited for inclusion in the set. These are Event, Exception,
ExceptionRef, Struct, AttributeDedaration, ConstantDeclaration, Enum,
String and Array. The classification in Section 4 identifies other important
features that are not directly supported by Corba DDL, for example the
explicit declaration of configuration parameters (ConfigParam) and
accessibility (AccessType). The authors also mention resource semantics -
while it may be more practical to document some of these concerns as prose,
important resource semantics can be characterized as design-by-contract
constraints using the Precondition, Postcondition and Invariant types in the
core set. The core set also includes six different types of resource parameters
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- these are return (O_RetParam), input (InParam), output (OutParam), input-
output (InOutParam), reference (I_RefParam) and optional parameters
(I_OptParam). This broad set of core types is shown in Table 2, and is used
as the basis for defining the language-independent interface schema in
Figure 3.

JAVA SCHEMA

Javalnterface —

:cessType:AccessType C

me:lnterfaceName 1 ..1

- extends:Extendedlnterf ace 0..*

-resourceDeclaration:ResourceDeclaration 0..* —

- constantDeclaration:ConstantDeclaration 0..*

- javalnvariartlnvariant 0. .*

- innerlnterface 0.. * — Javalnterfac e...

"innerClassO..*

~ exceptionRef: Exception Re f 0. .*

"~ returnParam:O_ftetParam 1 ..1

—javapreGondilion:Precondition 0..*

—javapostCondition: Postcondit i o n 0..

- JnputParam:lnParam 0..*

C# SCHEMA

CSharplnterface _

-accessType:AccessType 0..5

-htertaceName:lnterfaceName 0.1

-extendedlnterface 0..*

-ressurceDeclara1ion:ResourceDeclaration 0.,:

- property 0..*

—indexerO..*

-everfEvent 0..*

-returnParam:O_RetParam 1.1

-inputPara^O.
.valParanr.lnParam 1 ..1

:OutParam1..1

-e^famlnOutParam 1 ..1

'amArray 1..1

extends:Extendedlnterface 0..

— invokelnterf ace -

«cl i3ice»
CCMInterface—

resourceDeclaration:ResourceDeclaration 0. .*

attributeDeclaration:AttributeOedaration 0..*

constantDeclaration:ConstantDeclaration 0..*

exception:Exception 0. * , — structStruct 0..!
I inputParamO.

—typeDeclaration 0. .* 1 — union 1. .1
«choice^>

I — eiuim:EnumDeclaration 0..*

• ccmEvent:Event 0..*—EventSignature 0..*

—returnParam:O_RetParam 1 ..1

exceptionRef:ExceptionRef 0..*

ram:lnParam1..1

1..1

Figure 4. Language-specific schemata for Java, C# and IDL3 interfaces

The interface features of Java, C#, and CCM are depicted in Figure 4.
While the official language-specifications of these platforms provide a
detailed informal description of language semantics, rigourous formal
descriptions are not provided. To show how the semantics of language-
independent and language-specific interface features interrelate, input
parameter features are used as an example. In the core types, five input
parameter feature types are declared, each representing different parameter
passing semantics - value or input parameters (InParam), output parameters
(OutParam), value-result parameters (InOutParam), reference parameters
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(I__RefParam), and optional parameters (I_OptParam). The language-
independent schema allows a resource declaration to contain any of these
features, whereas the three language-specific schemata have different sets of
parameter passing semantics. Java only supports input parameters so it only
uses InParam. IDL3 supports input, output and value-result parameters, so it
uses InParam, OutParam and InOutParam. C# supports four types of input
parameter, value, out, ref and param. Value and out use the InParam and
OutParam core types respectively. However, despite its name, ref is
semantically equivalent to InOutParam rather than I_RefParam. As param is
not semantically equivalent to any of the core types, it is defined as a feature
unique to the C# schema.

The second approach is influenced by some of the problems identified
with the first approach and attempts to address them. In contrast to the first
approach, overlapping features in the language-independent and language-
specific schemata are defined in terms of the same set of core types, but the
actual language-independent and language-specific schemata are
independently defined. This means that the addition of new language-
specific features do not force change upon the language-independent
schema, and the number of features that can be included in the language-
independent schema is no longer restricted, giving it the potential to provide
broader support for language-independent interface modeling at an early
stage in the lifecycle, while still providing adequate support for language-
specific refinement at a later stage. Also, the schema layout is more intuitive
$nd easier to apply in comparison to the first approach. Therefore, as the
second approach is a more comprehensive solution, it is currently the basis
of our future work, and is applied in the remaining sections of this paper.

6. APPLYING THE MODEL TO AN ADL

The most recent C2-based ADL (xADL 2.0) provides features for
specifying architectural structure and supporting basic reconfiguration [11].
As it is based on XML-Schemas it is compatible with many existing tools.
Also, xADL is designed to be extensible, allowing modifications to be made
to it more easily than any of the other existing ADLs, and it is therefore used
as the basis for experimentation. xADL 2.0's language structure is split
across a number of interrelated schemata. The most important are the
Instance and Structure&Types schemata. The Instance schema is designed to
represent a completed, running architecture that is instantiated from a
design-time Structure&Types architectural representation. The
Structure&Types representation allows component, connector or interface
elements to be represented as types. Design-time or run-time architectural
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topologies can be created using the Structure&Types or Instance schemata
respectively by declaring one or more instances of a type and creating links
between them. The interface meta-language is added by replacing xADL's
style-specific interface modeling features with a new interface schema
containing the core, language-independent and language-specific parts. This
modification is made in the Structure&Types schema, where the existing
construct used to model interface types is extended.

Alternatively, other ADLs such as ACME and Darwin provide support
for extensibility in the form of properties or tagged values. Such ADLs can
apply the presented interface meta-language by referencing XML interface
descriptions that conform to the presented XML-Schemata.

7. APPLYING THE INTERFACE EXTENSIONS -
STACK EXAMPLE

To demonstrate the approach in practice, the modified ADL is used to
represent a stack component (Stacklmpl) and two interfaces that it
implements (Stack and RemStack), using a Java-based design-by-contract
framework. As Stacklmpl is a binary Java class, the Java-specific interface
schema is used to provide a concrete definition of Stack and RemStack.
These interface definitions also contain design-by-contract constraints
(Figure 5). To demonstrate how the interface model can be used to broaden
an ADL's set of support, a generator was written to process the ADL
description, producing a series of files for each defined interface. Figure 5
depicts StackArch.xml and the files generated from it. First, a language-
specific interface file is generated for each interface - in this case, Stack.java
and RemStack.java. It also generates a proxy that intercepts all interface
invocations and checks the relevant constraints specified in the ADL
description. In the example, three files are generated - StackJStacklmpl.java
and RemStack_StackImpl.java contain the constraint-checking code, while
StacklmplProxy.java carries out the runtime checks. The constraint checking
mechanism is greatly influenced by DBCProxy, a Java-oriented design-by-
contract framework [19]. DBCProxy uses Java's dynamic proxy mechanism
and reflection to enforce constraints. However, as this approach is highly
Java-specific, it has been used to develop a simpler, static solution that is
clearer, more efficient and more applicable to other programming languages.

Instantiation and invocation of the proxy is shown in Figure 6. The proxy
is used by calling the static getlnstance() method. A variable of interface
type Stack is declared and assigned to getlnstanceQ. The proxy contains
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boolean switches that enable/disable the assertions for each interface that the
component implements. If an interface's constraints are switched on,
getlnstance() returns a proxy instance, otherwise it returns an instance of the
component. Once the client attempts to place an item on the stack, the call is
rerouted through the proxy. In this example, StacklmplProxy uses
Stack_StackImpl to check the relevant assertions. In this case, it firstly
checks any preconditions on put(), and then it invokes the actual operation
on the component. It then checks any postconditions and finally any
interface invariants to ensure that the component is in the correct state.

ADL description

«fnterface» ^
Stack J ^

- StackArch.xml

StacklmpUlass

>

«irnplemerrtation»
Stacklmpl

interface Stack (extract)

void put(Object obj)
pre - !obj().full(), wait
post - !obj().emptyO

obj

inv-obj().count()>=0
inv- obJO-courrtO <- obj().capacity()

GENERATED FROM StackArch.xml

RemStack.jaua

Stack_Stacklmpi.java
PROXY

StacklmpfProxyjava

StacklmplProxy

StMklmpl.class

«implementation>>
Stacklmpl

Figure 5. Stack Example - files generated from ADL description

Stack_Stacklmpl.jaua

Stack stack * Stack.StacklmpLgetlnstanceO

client :
Stack_Stacklmpl

[PFel jpj5il M

Stack.java

\ Stack f
Stack Stacklmpl

iPFil fpHitl fiH5|

3

CoreProxy.put(obj,thl8);

4.3 inv.ChecklnyariantsO

PROXY

StacklmpProxyJava

StacklmplProxy

42 post.putO

4 prcputO

4t
wrappee.put(obj) «implementation»

Stacklmpl

Figure 6. Example proxy instantiation and invocation

An ADL-based environment should be able to provide concrete support
for exception handling. Beugnard et al. identify four approaches to dealing
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with constraint violations [20]. The generated proxy addresses some of these
concerns for interface-level constraints:
1. Reject - Raise an exception and propagate it to the client.
2. Ignore - Proceed with the operation, ignoring any adverse effect.
3. Wait - If a precondition fails, this mode defaults to waiting until the

precondition becomes true. This synchronization protocol is based on
separate objects [21], first used in Eiffel. Obviously, this only applies in
concurrent contexts.

4. Negotiate - This involves the renegotiation of the client-server contract,
allowing the client to retry the operation, possibly with new values.

The proxy in this example defaults to the Reject mode. The Ignore mode
can be applied to any constraint by appending an "ignore" parameter to it.
Also, the proxy allows the Wait mode to be applied to a precondition by
appending a "wait" parameter, inheriting this feature from the DBCProxy
framework. At present, the proxy does not support the Negotiate mode, but
future work will investigate the implications of doing so.

8. CONCLUSIONS AND FUTURE WORK

The approach discussed in this paper provides a foundation that allows
ADLs to support concrete, practical interface descriptions, thereby
broadening their scope of use. Its treatment of platform independent and
platform specific concerns is pivotal to allowing the ADL description to be a
permanent, meaningful artifact from high-level architectural analysis
through to maintenance and evolution. It is compliant with the Model Driven
Architecture (MDA) philosophy, providing a basis for the transformation of
platform independent ADL interface descriptions into platform specific ones.
This is a step towards allowing platform independent ADL descriptions to
evolve into platform specific ones.

In order to provide precise mappings between language-independent and
language-specific interfaces, future work will aim to add further clarification
of informal feature semantics, and also to demonstrate how the approach can
be used to support a typical component-based development process.
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HOW ADLS CAN HELP IN ADAPTING THE
CORBA COMPONENT MODEL TO REAL-TIME
EMBEDDED SOFTWARE DESIGN
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Gerard1, Virginie Watine2, Stephane Menoret2 and Francois Terrier1
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Abstract: Coping with the increasing complexity of software in embedded and
distributed real-time systems is becoming a major concern. Even if promising
as far as this latter aspect is concerned, design techniques issued from the
middleware components (or framework-based) approaches have until now fall
short in achieving their breakthrough in the real-time and embedded
community. They are usually perceived as complex, monolithic and resulting
in oversized applications, and thus, as not adapted to RT/E software
development constraints. In an attempt to bridge this gap, we1 aim at
contributing to the adaptation of the lightweight CCM [1] to real-time and
embedded systems. The originality of our approach, mainly resides in the
emphasis on high-level (or design-time) issues of the development process, on
the contrary to the usual focus on low-level ones: we raise QoS issues from
implementation level to analysis and design level. In such a process, we have
found it would be worth integrating considerations from the software
architecrure/ADL field in middleware components approaches. We especially
claim that interactions configurability at design time is a major requirement in
the class of systems we target and that, on this latter aspect, middleware
components approaches could benefit from a separation of concerns between
computation and interactions, as in most ADLs.

Key words: Real-Time Embedded, CCM, ADL, Connectors, Components

1 The work set out in this paper is performed in the context of the ICE (Interaction of
Components during Execution) research project, lead jointly by CEA-LIST and
Thales/ALICE pilot program. For further information, see http://www.carroll-research.org.



118 Architecture Description Languages

1. Introduction

Real-time embedded software is generally considered as a category of
software in which resources are constrained: the application design has to
take into account such aspects as power and memory consumption, on top of
classical real-time constraints. Thus, common reasons why middleware
components approaches are considered to be poorly adapted to real-time and
embedded systems area is that the runtime platforms consume too much
resources (e.g. memory footprint), that they result in "heavyweight"
components, and eventually because they do not properly address real-time
constraints.

But this stance needs to be moderated: the term "RT/E systems" refers to
a large family, where the requirements are quite heterogeneous. In particular,
if the assertion made above about resources constraints applies to certain
members of this family -this is for instance the case of distributed command
and control systems, where sensors/actuators are associated with small units
of computation, usually provided with very limited resources-, it is not
completely true for all: for instance, some embedded communication
systems own larger hardware configurations (about 1-2 Mb of RAM/ROM
and even larger, sometimes close to those of common workstations). Then,
middleware components approaches have numerous inherent advantages
from which RT/E systems could benefit: they provide applications with
standard platforms comprising an extensive set of extra-functional services
(e.g. distribution management, security); they come with well-defined
component's abstract models; they specify architecture of execution
frameworks; they natively address deployment and packaging issues, and
they provide guidelines which structure the components development
process. Moreover, efforts have already been made to cut down the size of
middleware platforms, for instance the initiative Lightweight CCM [1]
which proposes a "low-fat" version of CCM mostly dedicated to resources-
constrained systems. Even real-time aspects have (somehow) been
addressed, by extending the original platforms with dedicated mechanisms:
we can quote the example of real-time CORBA [3].

However, this continuous upgrading towards "RT/E-compliant"
middleware platforms by means of iterative functionalities addition /
subtraction diverts attention from several of their initial cons: they are
extremely complex to understand (and to use), and they lack design-time
configurability. The usefulness of the large range of provided services is
mitigated by the difficulty for the developer to appropriate these services in
accordance with his specific requirements. Thus, our belief is that major
issues for bridging the gap with RT/E reside not only in enhancing the
platforms themselves, but also in simplifying their use and, in enabling the
application designers to adapt the platforms to their specific needs. The
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objective is thus to identify key issues which would contribute to answer
these two concerns. Researchers from middleware have obviously a bottom-
up approach, which consists in a constant rising in abstraction -from, for
instance, CORBA to CCM-. In order to have a complementary view, we
have chosen to consider approaches which have had a top-down process,
hence our focus on ADLs-based approaches. This paper presents the first
step of our work, in which the focus is on interactions between components
in CCM. It explains why we have chosen to introduce the concept of ADL
connector concept in CCM, and gives some insights about how we intend to
proceed. The structure of this paper is as follows: Section 2 is an
introductive overview of CCM, with a focus on the aspects linked to our
study. In Section 3, our focus on interactions is justified, and we describe the
rationale which has lead us to the "CCM connector" choice. Section 4
describes the primitive set of connectors we have built for integration in
CCM. Eventually, Section 5 gives some insights about the needed CCM
extensions, before concluding.

2. Introducing CCM

This section presents some fundamentals of framework-based approaches
and gives an overview of the CCM.

General concepts of framework-based approaches
Frameworks have been recognized to capture best practices in some

engineering domains: they provide templated implementations of patterns
that were seen as leveraging issues in particular domains. A main
characteristic of many frameworks is the inversion of the control flow: the
application specific code is invoked by the framework to perform specific
tasks and not vice versa (as opposed to a library).

Middleware components approaches use the abstraction of an
encapsulated component. A key characteristic of a component is that it is
loosely coupled, i.e. there are no dependencies to other components - only to
certain interfaces. This is achieved by the separation of interface and
implementation. A component implements a set of interfaces and it requires
components implementing a set of other interfaces.

A component requiring an interface can be bound to another component
offering a compatible interface (usually compatibility is defined via
inheritance hierarchies or via a structural equivalence). The bindings are
usually specified by a separate assembly descriptor.

Components are often embedded into Containers that mediate requests
from and to the component. Containers are part of the execution framework
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for components that provides frequently used services such as persistency or
security. It can be tailored towards the application needs. The bindings
between components are enabled by means of a packaging format as well as
a deployment infrastructure.

The CORBA Component Model
In the CORBA Component model, the external connection points of

components are called ports. There are four different kinds of ports, called
facets, receptacles, event sources and event sinks. Facets correspond to
provided (implemented) interfaces, receptacles to required interfaces
(containing method calls specified in IDL - Interface Definition Language).
Event sources and sinks are the event based counterparts to receptacles and
facets. Sources emit events of a certain type, event sinks are named
connection points into which events can be pushed. Besides the facets, the
component always implements a primary interface, called equivalent
interface. Figure 1 shows a CCM component. Receptacles can be connected
to facets, as depicted for the second receptacle on the right.

component reference supports
component's equivalent interface

facets

receptacles

attributes
(for

configuration)

Event
sink

Event
source

Figure 1: CORBA Component Model
Component instances are managed by a component home, which is in

charge of instantiating and deleting components, i.e. the components life
cycle (not shown).

We give below an example of a component description in IDL3, as well
as the description of its associated interfaces, event types, and home:

i n t e r f a c e i n t f l {
void do_something( in string s );

}} ;
eventtype E {
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public string s;

};
component C {
provides intfl a_intfl;
consumes E a_E;

};
home C_home manages C {
attribute string foo;

} ;
The CCM introduces a so called component implementation framework

(CIF) with the objective to separate concerns: the component should not be
responsible for instance to manage connections or know how to emit an
event via an underlying CORBA service.

External
interface

< -

Component
Container

Callback
interface

mediated by
container

EnterpriseComponent

Internal interface

\

T
Container API

Comp.specific
context +

CCMContext

External
interface

Figure 2: Components are embedded into a container
The container is the glue between a component and the underlying

execution platform as shown in Figure 2. It provides a programming
interface for the component, the internal interface. This interface consists of
a standardized container API and a component specific context object. The
code of the context object is completely generated from the IDL definition. It
provides an interface that allows the component to retrieve references for
used interfaces and operations related to the publishing of events (a reference
to an implementation of the Context is passed by the container to the
component). If the latter are invoked, the context object generates suitable
events of the underlying event mechanism, usually the CORBA notification
service. For incoming events, the component has to implement a callback
interface and the container mediates the event by invoking a method
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provided on this interface. Please note that this form of event delivery does
not allow the component to poll for new events, it is always "pushed" into
the component. Since the container shields the component by intercepting its
communication, it can implement some non-functional requirements such as
logging or security.

The CCM provides an explicit deployment step within the development
process. In this phase, component instances (including values of their
attributes) as well as their interconnections are specified. This task might be
supported by a suitable tool. The specification is done by means of different
descriptors files in XML, in particular a component descriptor and
component assembly descriptors.

We omit further details of the CCM, since they are not necessary in order
to understand the rest of the paper.

3. Answering the need for a CCM interactions improvement

In [14], the author states that (static) configurability is a paramount
concern in real-time embedded systems. This is particularly true when
talking about components interactions: industrial practices tend to favor
different architecture styles depending on the application domain considered.
As examples, in the field of communication protocols, a layered approach
together with a pipes and filters generalized pattern is commonly used. In the
signal processing domain, a data-flow approach is considered most of the
time. In some distributed systems like command and control-ones, a
common practice is to use variations around publish-subscribe. The variety
of practices thus highlights the necessity, to provide developers with means
to properly configure the interaction mechanisms to be used in their
applications and, to ensure the adherence to specified features (e.g. QoS
ones) at execution. And yet, as most middleware components approaches,
CCM offers rather poor means to express and configure components'
interactions modalities at design time.

In order to bridge this gap, we have first considered various attempts to
adapt CBSE to real-time embedded software design. In these latter, three
issues are generally distinguished:
• Adaptation of the component model, which is an informal representation

of what should be a component. It usually specifies the content (e.g.
binary [12]) of components, the interaction points with the environment
(e.g. event channels [13]), and often a set of non-functional features
associated to the component. The originality of these approaches
compared to classical ones usually lies in this latter point. For instance,
many authors seem to agree on the integration of WCET in components.
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However, in some cases, the list of features to integrate can be much
larger, e.g., memory needs, deadline, power requirements.

• The development process of an application with components is often
described as a complement of the component model. This issue often
emphasizes the need to enable the reuse of components and the necessity
to have a connection with off-the-shelf validation tools, for instance to
assess the schedulability of the resulting system. The guidance provided
for development process may also be a mean to introduce common real-
time architecture patterns [11].

• The last aspect usually addressed is architectural configuration, i.e.
representation of applications by connected graph of components. The
approaches demonstrate the way components may be composed, or how
the resulting system architecture may be validated, e.g. with regards to
interfaces compatibility or exclusion constraints.
A common point arising from these approaches is the focus on the

component model specification. Very little attention is paid to the interaction
modalities, which are implicitly specified by the components' interfaces and
the representation of the connections between these interfaces in the
architectural configuration. This focus is also obvious in [9], where the
authors list a set of industrial requirements for the CBSE approaches to be
suitable for automotive real-time embedded systems: all the requirements
regard either development process or component model issues.

The most relevant answer to our concern was actually found in
approaches issuing from the Software Architecture / ADLs field. ADLs
provide features for modeling software systems' conceptual architecture,
independently from implementation concerns [16]. An ADL usually
provides, on top of the component modeling concept, the notion of a
connector, which represents an architectural building block used to model
interactions among components and rules that govern those interactions.
Connectors are considered as first-class model elements [6] in the sense that
they have quite the same attached features as components, e.g. interfaces,
semantics, constraints, non-functional properties. For instance, Unicon [4]
proposes to specify a protocol for each connector which provides a
connector type, and assertions constraining the interaction (e.g. roles). Each
connector specification provides also an implementation which may be built-
in. Non-functional attributes may also be attached, e.g. real-time ones to
perform a schedulability analysis. In [5], a comprehensive framework is
provided to perform a classification of all kinds of connectors. This approach
chooses to classify connectors according to the service they provide, then-
types, and the dimensions along which these types may be refined. This
work follows a bottom-up pattern: instead of designing connectors and
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implementing the corresponding mechanism, the authors have made an
attempt to perform an exhaustive classification of existing interaction
mechanisms in software. In [18], the author proposes a radically different
view of connector. After having noticed that usual connectors address rather
primitive interactions mechanisms, he proposes to consider connectors as
"pattern-like transferable abstractions": connectors express only abstract
interactions -mainly specified by roles and protocols- which have no direct
mapping to the implementation of the application.

As noted in the introduction, one of the CCM drawbacks is that it does
not provide an abstract view of many aspects relevant for RT/E systems
(these are hidden in the implementation that may configure for instance a
CORBA timeout for synchronous operations). Many facilities are provided
by the communication layer, but they require a high level of expertise to be
used properly. Introducing connectors would constitute an opportunity to
provide a high-level translation of these mechanisms in a more
understandable manner. Connectors are also likely to facilitate the
integration, reuse and replacement of components, especially when building
applications from off-the-shelf ones. These connectors should not, of course,
result in a one-to-one representation of the underlying mechanisms. The aim
is to provide the developer with easily configurable interaction facilities,
shielding him the complexity of the platform. However, unlike [18], we
believe that introducing connectors is bound to have an impact on the CCM
component model and accompanying artifacts (e.g. IDL), and that
connectors shall have an implementation counterpart. On top of that, the
native architecture of CCM appears to be adapted to perform the
introduction of connectors. For instance, with its intermediate positioning
between the communication layer and the application, the components'
container is a relevant place holder for an implementation of the connectors.
Another important issue to consider is the integration in the development
process: our opinion slightly differs from the "connectors as first-call
elements" software architecture's leitmotiv. Since we do not intend to act on
the communication layer, but only on the CCM level, the connectors to be
built will be largely constrained by the native mechanisms of the underlying
platform. In our view of the development process, connectors will not be
designed in the same way components are designed, but a set of primitive
connectors will be predefined and provided to the application developer,
who will be able only to configure them in order to fill the application
requirements. Following these high-level requirements, the points to deal
with are thus: first to define these primitive connectors, then to ensure their
configurability, and at last integrate them in CCM. In the next section, we
explain how we have dealt with the first two points, based on both a
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bibliographical work in real-time platform and on the connector
classification framework provided in [5].

4. Interactions reification: building the primitive connectors

Our aim was twofold: identifying main interaction mechanisms available
in real-time platforms, finding means to express these mechanisms by means
of configurable connectors. The first point has been addressed by trying to
cover a large area in terms of technological trends in real-time systems in our
bibliographical work. Thus, several standard platforms offering different
levels of abstraction have been considered, from operating systems (e.g.
OSEK [20]) to middleware layers (e.g. Fractal [21]). Furthermore, the main
computation models in real-time systems have been studied (e.g. time-
triggered [19] and event-triggered architecture). We have also benefit from
the experience acquired in working on the Accord/UML platform [7], a
complex real-time systems development facility designed at CEA-List. In
order to deal with the second issue, we have chosen to use as a base the
conceptual foundations of the connector classification framework provided
by [5]. Our rationale is thus the following: defining basic connectors,
refining them by attaching them sets of parameters/sub-parameters which
may take different values, and assessing these connectors by expressing with
them the mechanisms found in the various real-time platforms.

Root connector

Parameters & sub-
parameters

Figure 3: Root Connector
In order to set a starting point in the connectors design, we have tried to

clarify the notion of interaction by introducing several basic characteristics:
in our rationale, an interaction involves several participants, each acting in a
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given role (e.g. sender, subscriber); the cardinality of the interaction
specifies the number of components instances associated to each role, and
the behavior of a role precises the actions performed by a component
playing this role. Interactions are also to be considered from the service type
point of view: communication (i.e. data transmission) or coordination (i.e.
synchronization). In RT/E applications, Quality of Service requirements (e.g.
priority, deadline) may be associated to the interaction. These few
characteristics specify a "root connector" (Figure 3) from which all our
connectors derive.

Parameters & sub-
parameters

Possible Values

Figure 4: Message connector
From our bibliographical work, we have identified three main interaction

mechanisms: message passing, event broadcasting and procedure call. These
mechanisms have then been directly mapped to primitive connectors
(message, event, and procedure call), and refined by adding parameters and
sub-parameters, following the base pattern presented above. In the
following, we detail an example of building such a primitive connector: the
Message one. Message passing is a very common mechanism in real-time
platform, which basically consists in a data exchange between
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tasks/components. To build the associated primitive connector "message",
we have considered one by one its base parameters:
• Roles: In all platforms, message passing involves two roles: sender and

receiver. Depending on the platform considered, cardinality may be 1 to
1, or n to m. The behavior is homogeneous among the different platform:
the sender performs a push operation, and the receiver polls the incoming
messages.

• Service: Message passing is a communication support.
• QoS: Depending on the safety requirements of the platform, the delivery

of a message may be guaranteed (strict) or not (best-effort). Messages
may be filtered (for instance, not accepting the same content multiple
times) at reception or emission. Several Real-Time features may also be
associated to a message connector: temporal constraints (period,
deadline,...); priority: have all the message the same priority
(prioritized)? Or can a priority be set for each message (prioritized)?
synchronicity: asynchronous delivery, or synchronous.
The last aspect, not considered until now as not present in the root

connector, is the content: depending on the approaches, this content may be
typed (e.g. C type in OSEK) or untyped. Figure 4 shows the message
connector type resulting from this analysis.

It is equally possible to describe the "event" connector, which is another
common interaction mechanism in real-time systems. Briefly, let us precise
that the majority of parameters identified in messages are applicable to
events. However, roles behaviors are affected (for instance, the receiver will
be invoked or will poll the received messages) and the focus is no more on
the content since what matters is the occurrence of the event and not its
format.

In the same way, we have built the procedure call connector. This set of
three connectors has then been assessed with regards to its expressiveness,
by using them to represent the interactions mechanisms offered by the
studied real-time. Platform-specific mechanisms are expressed as subsets of
the primitive connectors: depending on the platform considered,
parameters/sub-parameters and values are removed. For instance,
representing the POSIX message queues requires to remove from the
message connectors the "filtering" QoS sub-parameter (and its associated
values), as well as the "unprioritized" priority value, the "unqueued"
queuing value, the "synchronous" synchronicity value, and the "strict"
delivery value.

Once the primitive connectors built and assessed, we have looked for
ways to integrate them in CCM. In the next sections, we list the issues which
have to be dealt with, and give for several of them some elements of answer.
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5. Lightweight CCM extension strategy

There are two extensions to the CCM model: the first is the introduction
of connectors, the second an extension of port abilities.

A connector shares many properties with a component: it will offer ports
as interaction points and provide attributes for its configuration. Therefore,
its specification in IDL will "look like" a normal component specification in
which the keyword component has been exchanged by the keyword
connector. Of course, its implementation will be different to that of a
component, as shown later. Unlike in the standard CCM, components will
normally not be connected directly with each other, but use a connector in
between. This means, that a component instance binds one of its ports to a
suitable port of a connector instance which in turn will be bound via another
port to the target component (in general, it should be possible that the
interaction is mediated via additional connectors). QoS aspects can be
configured either via the attributes of a connector or a specific, standardized
interface.

The connection of components and connectors via ports motivates the
second CCM extension: if a component interacts with a connector, it plays a
certain role. For instance, it could be an event producer or an event
consumer. In the CCM, ports always correspond to either implementing or
using a certain interface. For general interactions, this is not sufficient, since
a single role may imply using a certain interface and implementing another
one. For instance, an event producer might want to receive a notification, if
an event has been successfully delivered to all subscribed consumers (or if
the delivery has failed). In this example, the producer role would imply
implementing a delivery-status interface and using a push interface for the
delivery at the same time. While it is possible to define this scenario via a
pair of uses/provides specification in the IDL, we would not have the
possibility to associate a single role-name with this interaction.

Therefore, we propose to extend the notion of a port in CCM into an
element that consists of zero or more provided as well as zero or more
required interfaces, i.e. closely resembling the UML2 [17] specification of a
port - unlike in the current CCM. For the example, we would get the
following definition:
Port PushWithNotification {

provides iPush push; // provided interface
uses IDe l ive ryS ta tu s d e l i v e r y S t a t u s ; //required intf.

}
A component will have the ability to use or provide ports and supply a

role name, using the syntax use_port <port-name> as <role-name>
(analogous: provide_port <port-name> with <role-name>). The translation
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of this extended IDL code into the existing one is straight forward: the use
(provision) of a port is replaced by the use (provision) of the interfaces
provided by a port and the provision (use) of the interfaces required by it.

The role names are important during the assembly of components and
connectors. If a component instance is bound to a connector instance, each
use of a port of the component has to match the provision of a port of the
connector and vice versa. Provided and used ports match only, if type and
role name are identical. This implicit binding via a role name avoids an
additional specification (implying a further complexity). We assume that it
will not impose a restriction in practice, since the use of a different role-
name will almost certainly be accompanied by a different semantics that
would inhibit the (unchanged) reuse of a component or connector.

Component
A

Connector
C

Component
B

High Level View

Implementation View

Non-functional configuration
interface (QoS)

Component

container

Connection
management

B

Fragmented connector
implementation

Interaction control flow

Figure 5: A first draft for architectural integration of connectors

However, the implementation of a connector - i.e. the connector's
behaviour - is different to that of a normal component. It might behave
almost like a normal component, e.g. in case of an event channel that is
located on a specific node. However, in general, connectors can only be
efficient, if their implementation consists of several parts, each co-located
with a component that uses the connector in a specific role as shown in
Figure 5. In addition, the connectors will be integrated in a different way
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with the container (it is not clear yet, whether the connectors should be
considered as part of the container or not). Therefore, the CCM's code
generation rules need to be adapted. It seems useful to support the
fragmentation of a connector on the implementation level by different
executors (compliant with CCM terminology; but different from component
executors). Each of these executors would correspond to the use or provision
of a port and would be co-located with the component bound to it.

The chosen component/connector model allows for the adaptation of
invocations without modification: the connector would simply need to
provide a port that assumes a certain style of usage and can internally
transform and mediate requests to another port. An example is the
transformation of a typed event at user level into an untyped event used by
the underlying platform. It may be possible to generate the necessary
adaptation code from a suitable description of the conversion.

There are two further aspects, connector packaging and assembly
descriptors that need to be adapted as well. Since components are packaged
into archives (containing descriptors, binary code for component), we
propose to package connectors in archives, too. The rationale for this is to
integrate the connector in the deployment procedure: it can be needed to
instantiate part of the connector on a particular host (think about Event
Channels). The component assembly descriptor format needs also to be
adapted since, as shortly mentioned in the CCM description, the assembly
descriptor format allows to describe direct binding between components (and
matching port types), and hence does not allow to insert connectors between
them.

6. Conclusions and Perspectives

We have described in this paper our ongoing work in the context of the
ICE project, which aims at contributing to the adaptation of the CORBA
component model to real-time software design domain. We have followed a
process of real-time interaction mechanisms expression by means of
connectors, supported and inspired by similar works from the ADLs area.
We have laid the foundations for the next stage which will focus in
concretely integrating these primitive connectors in CCM, and
demonstrating the relevance of our approach through prototyping and
application to use cases. The use cases selected have a close connection to
"real" application domains and offer enough complexity to constitute an
assessment of our conceptual and technical choices. For instance, we plan to
deal with a simplified UMTS radio-protocol stack use case.

But CCM enhancement is of course still an open issue. Even if well-
matured in some aspects, e.g., the extensive set of services provided with the
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middleware or the deployment issue, it still lacks major features. The main
one regards what ADLs call architectural configuration, i.e. the ability to
specify an application by means of a graphical representation, as well as
addressing the associated issues (e.g. compositionality, refinement,
scalability) [16]. Effectively, using CCM in its current state requires a sound
knowledge of the underlying CORBA platform, and high skills in platforms
implementation languages, which mitigate its usefulness for neophytes.
Moreover, this absence of a high-level representation forbids the early
validation of the developed application, an action commonly performed with
ADLs.

Building this CCM architectural configuration requires in a first step to
give an abstract view of the mechanisms provided by the CCM middleware
platform. It sets also a need for an enhancement of the CCM component
model. Our contribution regards these two issues, with a focus on
interactions representation.
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Abstract Taking into account the hardware architecture specificities is a crucial step in
the development of an efficient application. This is particularly the case for em-
bedded systems where constraints are strong (real-time) and resources limited
(computing, power). This approach is called co-design, and it is found more
or less explicitly in ADLs. Much work have been done around co-design and
ADLs, but no standard notation and semantics have emerged. Concerning soft-
ware engineering, UML has become a recognized standard language for mod-
eling, proving the need of users for common syntax and vocabulary to specify
their applications. We believe that it would useful to use the well achieved syn-
tax and vocabulary of UML for both applications and hardware architectures,
that is to say using UML as an ADL. Our approach consists in a clear special-
ization of an UML subset via a the proposition of a generic profile that allows
the definition of precise semantic and syntaxic rules. The generic profile can
then be extended to suit the need of the user. To illustrate our subject, we give
a refinement example of the profile to get relevant informations for a simula-
tion at the TLM level (Transaction Level Modeling). The modeling of the Texas
Instrument OMAP2410 and OMAP2420 is provided as an example.
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1. Hardware Modeling and UML

The usage of an ADL permits to represent static or dynamic characteris-
tics of a system. This system is either a software or a hardware system. For
embedded systems, both system are defi ned: you need to co-design your ap-
plication and your hardware platform in the same time with respect to specifi c
constraints.

Concerning software engineering, UML (Unifi ed Modeling Language) [Ob-
ject Management Group, Inc., 2003] has become a standard language for mod-
eling. It does not present a particular methodology and it can be used to model
different point of view of the same model. UML 2 introduces the compo-
nent notion and structure diagrams that facilitate architecture modeling. With
deployment diagrams, UML 2 also considers hardware descriptions and map-
ping. Unfortunately, the model for applications differs from the model for
hardware. The same comment applies for the mapping of an application on a
particular hardware, for example a System on Chip: we want to benefi t from
the component notion, the hierarchical constructs of the structural and behav-
ioral diagrams for the hardware design as well as for the software design.

We defi ne our hardware description metamodel based on the UML 2.0
component notion. The structural specifi cation is suffi cient to generate Sys-
temC [Open SystemC Initiative, 2002] code to produce a TLM (Transaction
Level Modeling) simulation once the mapping of an application on this hard-
ware model is achieved.

1.1 Related Work

Several proposals, emerged from the OMG world or not, introduce hardware
modeling techniques and/or concepts. Only a few ones are "sold" as ADLs.

AADL [Feiler et al., 2003] (Avionics Architecture Description Language)
is the only proposal which clearly advocates the use of UML as an ADL. This
language is based on MetaH. It is used to describe the structure of an embedded
system as a gathering of software and hardware components. It can describe
both functional (data inputs and outputs) and non functional (such as timing)
aspects of components. A UML profi le for AADL (based on UML 2) is under
standardization, and will be soon submitted to the OMG. Concerning the hard-
ware modeling part of this proposal, four concepts are introduced: memory,
processor, bus and device. We will see later in this paper that our proposal is
not semantically far from this one. However, the goal of hardware modeling
(called platform) in AADL is not the same as ours. The platform specifi ca-
tion is more or less used to apply schedulability and fault tolerance analysis
verifi cation tools (that is to say to verify that a software associated to one plat-
form meets the requirements that the system must satisfy), whereas the tools
we plan to use are rather optimization tools (for mapping of computing, data,
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and communications). Moreover, we can't clearly see in the specifi cation of
the language how the hardware concepts can be composed and/or assembled.

The UML SPT Profile [Object Management Group, Inc., 2002] (Schedul-
ing, Performance, and Time analysis) is an UML 1.x OMG standard profile
for embedded systems modeling. It introduces various hardware (or more gen-
erally platform) modeling concepts and an interesting resource classifi cation
according to three criteria: purpose (processor, communication and device),
activeness (a resource is active when it is able to generate stimuli, and passive
when it is only able to react when prompted by stimuli), and protection (a re-
source is protected when the access to services it offers is restricted according
to some control access policy). However, the profi le gives no clear orientation
and methodology on the way it can be used. Moreover, the underlying exe-
cution model (a resource is acquired and then released) is too restrictive and
unfortunately does not suit our needs.

HaSoC [Green and Edwards, 2002a, Green and Edwards, 2002b] (Hard-
ware and Software Objects on Chip) is a platform-based design methodology
using UML to represent high-level structure and behaviour of the hardware ar-
chitecture model of an application platform. The hardware architecture model
of HASoC distinguishes general-purpose hardware (processors, memory), pro-
grammable logic (FPGAs), fi xed-function (custom) hardware, and intercon-
nection elements. This model enables to generate SystemC code for simulation
and particularly for hardware synthesis. For our purpose, distinction between
programmable and non programmable units is not necessary x, as hardware
synthesis is not one of our goal. Moreover, this model doesn't seem to exploit
hierarchical capabilities offered by UML 2.

The SLOOP [Zhu et al., 2002] (System Level design with Object-Oriented
Process) design process integrates a methodology based on UML for both SoC
modeling and performance evaluation at system level. The hardware model
proposed is similar to those previously presented: it proposes hardware ele-
ments such as processors, memories, buses and hardware devices. However,
the hardware architectures are modeled via deployment diagrams, with various
stereotypes applied to "Nodes". This choice has the benefi t of being simple and
relatively natural for people coming from the UML world. Indeed, deployment
diagrams are used to coarsely describe execution platforms for applications.
But we believe that deployment diagrams are too restrictive to model archi-
tectures (no hierarchy, no encapsulation via ports and interfaces, no behavior
description...), and that the same model must be used for both hardware and
software.
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1.2 Proposal

Our approach consists in a clear specialization of an UML subset for which
we can defi ne precise syntactic and semantic rules. This prevents from all kind
of ambiguities in the model2.

The abstract syntax of our model is described by a MOF metamodel defi ned
as an extension of the UML 2 metamodel. The metamodeling brings a set of
tools which will enable us to specify our application and hardware architec-
ture models using UML tools, to reuse functional and physical IPs, to ensure
refi nements between abstraction levels via mapping rules, to ensure interoper-
ability between the different abstraction levels used in a same codesign, and
to ensure the opening to other tools, like verifi cation tools, thought the use
of standards. The concrete syntax is defi ned by a profi le for UML 2. This
profi le is, for the moment, only based on UML 2 class diagrams and internal
structure diagrams3. In this paper, we focus on the description of the pro-
fi le(there is almost a "one to one" equivalence between concepts introduced
in the metamodel and stereotypes introduced in the profi le). The generic rules
and concepts are described in a generic part of the profi le. This generic ele-
ments are then refi ned via an extension of the profi le to fi t to the needs of the
user (documentation, simulation at various abstraction levels, optimization...).

The fi rst part of the paper summaries the so-called "Y model approach" [Du-
moulin et al., 2003], and describes the generic part of the profi le, focusing on
the set of "basic blocks" that defi ne the syntax and semantics of our hardware
architecture model. Therefore, we propose a classifi cation, at the same time
both functional and structural, in order to identify each kind of components4

of our model. Then, we specify the construction rules which govern compo-
nents assembling and composition.

The second part of this document shows how an extension of the profi le
can be used to refi ne the "basic blocks", in order to produce models suited to
a particular use. For that, we give an extension of the used profi le to gather
relevant informations of a simulation at a TLM level in an environment such
as SystemC. As a conclusion, we illustrate our subject with a case study: the
TIOMAP2410 and OMAP2420 [Texas Instruments, 2004].

2. Y Model Approach

Our proposal is partially based upon the "Y-chart" concepts [Gajski and
Kuhn, 1983]. A clear distincition is made between application and hardware,
which are related via an explicit mapping.

The application and hardware architecture are described by different meta-
models. Some concepts handle within these two metamodels are similar in
order to unify and so simplify their understanding and use.
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The proposed methodology is to separately design the two models for the
application and the hardware architecture (maybe by two different people).
At this point, it becomes possible to map the application model on the hard-
ware architecture model. For this purpose we introduce a third metamodel, the
so-called association metamodel, to express the associations between the func-
tional components of the application model and the hardware components of
the hardware model. This third metamodel imports the fi rst two metamodels.

3. Hierarchical Hardware Architecture Model

We present here the different hardware components that we introduce in our
model, and we give the rules on the way to compose and assemble them with
each other.

The hardware components represent abstractions of physical hardware ar-
chitecture elements. A hardware component owns an interface materialized by
its ports, and a structure defi ned by an assembly of components via an internal
structure diagram.

3.1 Resource Classification

We propose to classify the resources according to two criteria: a functional
criterion, and a structural criterion (Fig. 2). Each resource is characterized by
a composition of these two criteria. In UML, it comes to apply two stereotypes
to each component.
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Functional Classification. We identify three kinds of function for a com-
ponent (three stereotypes in UML): a component can be either passive, active,
or for interconnection.

"PassiveHwComponent" A passive component symbolizes a resource which
has the function of supporting data. Typically, we fi nd in this category
elements such as RAMs, ROMs, sensors, or actuators.

"ActiveHwComponent" An active component symbolizes a resource which
has the function or reading or writing into passive resources. It may
modify, or not, the data. This category includes elements such as CPUs
or DMAs. It also includes more coarse-grained elements, such as a SMP
node inside a parallel machine.

"InterconnectHwComponent" An interconnection resource connects active
and passive components, or active and active in the case of a distributed
memory architecture. This category includes element as simple as a bus,
or as complex as an omega interconnection network.

Structural Classification. The structural classifi cation is used ease intro-
spection of models and, as a consequence, automatic or manual exploitation
of gathered data (for example to optimize the mapping of an application on a
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hardware architecture). We identify three kinds of structure for a component
(three stereotypes in UML): a component may be either elementary, passive,
or for repetition.

"ElementaryHwComponent" An elementary component is a component
without an internal structural description. For example, it could be used
in the case where we have an hardware IP for this component, or in the
case where we don't want to model the component more fi nely.

"CompoundHwComponent" A compound component is a component with an
internal structure description. A compound component can represent
an "executable architecture" (fully defined architecture) or a part of
an architecture that will be reused in other contexts. A compound
component may be defi ned with several hierarchy levels: a compound
component may be described as the gathering of other "sub" com-
pound components. The benefi ts of composition are numerous, and
they are not specifi c to our model: encapsulation of structural details
not needed at a given hierarchical level, reuse or repetition (in the case
of a "RepetitionHwComponent") of predefi ned blocks to model other
architectures...

"RepetitionHwComponent" A repetition component5 is a particular case of
the compound component. The repetition component structure contains
a regular repetition of a single component. This kind of component is
well suited to the modeling of massively parallel architectures and is
motivated by the recent introduction of such architectures in the design
of SoC such as the picoChip PC101 [picoChip, 2003].

3.2 Construction Rules

The construction rules (that is to say the composition and assembling rules)
of our model are based on UML 2.0 rules. From generic UML rules, we defi ne
coherent rules for the possible direction of ports ("required" or "provided")
according to the function of each component ("active", "passive" or "intercon-
nection"). Then, we propose rules for components assembling, based on rules
given for ports direction. We also lightly modify the semantic of connection
concept, but we remain coherent with defi nition given in UML 2 specifi cation.
Finally, we give rules concerning component composition.

Assembling Rules Defined in UML 2. The components are linked together
via connectors. The ports materialize the connection points. One or more re-
quired or provided interfaces are associated to each port. Two ports can be con-
nected only if they have compatible interfaces, and if one port is "required"6,
and the other is "provided"0.
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The methods associated to each interface represent services. A compo-
nent with a required port is able to emit services requests to its environment,
whereas a component with a provided port provides a set of services to its
environment.

Ports "direction". We use assembling rules defi ned in UML to restrict
possible directions of ports (required or provided) associated to each kind of
components of our architecture model.

A passive component only owns provided ports, as it can only propose ser-
vices for data support (read/write) to active components. An active component
typically owns required ports, as it can emit read or write services requests to
passive components. It can also own provided ports to receive requests emitted
by other active components, for example in the case of a distributed memory
architecture. An interconnection component owns required and provided, as it
has the function of linking active and passive components, or active and(Fig. 5)
active components.

Assembling Rules. Respecting rules previously mentioned, two passive
components can not be connected together (on both sides, there are only pro-
vided ports). We add the constraint that all connections between active and
passive components or between active and active components must be done via
an interconnection component. This constraint enables to ease and systematize
the parsing of models. Moreover, a clear identifi cation of the interconnection
resources enables to associate properties to these resources (such as bandwidth,
or latency).

Connections Semantics. Services associated to ports are implicit according
to the function of the component and the defi nition we gave of these functions
(the active components require read/write services to passive components via
interconnection components). As a consequence, an incomplete model in the
standard UML formalism (that is to say with no interfaces associated to ports)
can be interpreted without ambiguities in the context of our profi le. The user
of the profi le is free to add the interface suited to the case he is modeling.

Connections between ports are interpreted as potential data paths offered by
architecture, more than paths for services exchanges. This semantics is close
to the semantics of connections between modules in SystemC.

In our case, the association of interfaces to ports in a hardware architecture
is a way to refi ne its specifi cation according to application mapped on this
architecture.

Composition Rules. A passive compound component may only contain
other passive components. A active compound component can only contain
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other interconnection components. An active component can contain all kinds
of component. The top level component in the hierarchy is necessarily a active
compound (or repetition) component. By this way, the parsing of an architec-
ture consists in a traversal of active compound or repetition components.

4. A Profile Refinement for TLM Level Simulation
In this section, we show a refi nement of the generic profi le designed to get

relevant informations from a simulation at a TLM level, such as execution time,
load of interconnection elements, load balancing of active elements... The pro-
fi le refi nement consists in extending stereotypes defi ned in the generic part
by adding them properties. First of all, we describe data types associated to
properties of various modeling elements. Then, we show successively a refi ne-
ment for active elements, for passive elements, and fi nally for interconnection
elements.

4.1 Data Types

Data types described here are used to type properties added to various re-
fi ned model elements:

TimeExpression is an expression representing a duration ("13ns")

FrequencyExpression is an expression representing a clock frequency
("1.2MHz")

CapacityExpression is an expression representing a capacity ("16Mo")

BandWidthExpression is an expression representing a bandwidth
("3.5Go/s")

4.2 Active Component Refinement

To refi ne the concept of active component, we introduce two kinds of com-
ponents: "CPU" and "DMA" (Fig. 3). These components extend (in a UML point
view, but particularly in a semantic point of view) the defi nition of the active
component.

'CPU" Component. A CPU represents a resource able to read and write
in passive resources, with or without data modifi cations. It also symbolizes a
resource able to execute functions defi ned in the application model. It is po-
tentially able to execute all functions, except if the list of functions is explicitly
restricted7. CPU is a generic term gathering CPUs (strict meaning), DSPs, or
even FPGAs (i.e. all kind of programmable or not programmable resource able
to realize a computation on data). A CPU is characterized by four attributes:
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Figure 3. Active component refinement

frequency: Frequency-Expression. This property represents the clock fre-
quency of the CPU. For example, it can be used to determin the exe-
cution duration of a function, in the case where the number of cycles
necessary to execute this function on this CPU is known.

wordSize: Integer. This property represents the size of the words handled
by the CPU. The size expression unit is the bit.

dataCache: CapacityExpression. This property represents the size of the
data cache of the CPU.

instructionCache: CapacityExpression. This property represents the
size of the instruction cache of the CPU.

'DMA"Component. A DMA is characterized by its number of channels and
by the policy it uses: whether it is based on cycle-stealing or not.

4.3 Passive Component Refinement

To refi ne the concept of passive component, we introduce three kinds of
component: "Memory", "Sensor" and "Actuator" (Fig. 4). These compo-
nents extend (in a UML point view, but particularly in a semantic point of
view) the defi nition of the passive component.

'Memory" Component. A memory has the function of supporting data. It
is characterized by six attributes:

capacity: CapacityExpression. This property represents the size of the
memory.
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la tency: TimeExpression. This property represents the latency related to
a memory access. The value is expressed in time, and not in cycles, in
order to make easier the reuse of memory component for several archi-
tecture modelings, or in the case of heterogeneous architectures (several
kinds of CPU accessing the same memory component).

readBandWidth: BandWidthExpression. This property represents the read
bandwidth of the memory.

writeBandWidth: BandWidthExpression. This property represents the
write bandwidth of the memory.

wordSize: CapacityExpression. This property represents the size of a
memory word.

burs t : Integer . This property represents the number of memory word col-
lected when an access in burst mode occurs.

'Sensor"Component. A sensor represents a resource able to periodically
catch data from its environment, and put it at hardware architecture disposal.
Sensors are classifi ed in the category of passive elements, in the way that they
can be considered as read only memories. A active element can periodically
get (read) data to compute or move from it. A sensor is characterized by two
attributes:

la tency: TimeExpression. This property represents the latency related to
a read access.

readBandWidth: BandWidthExpression. This property represents the read
bandwidth of the sensor.
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Actuator"Component. An actuator is the opposite of a sensor, that is
to say a resource that provides data from the hardware architecture to its en-
vironment. Actuators are classifi ed in the category of passive elements, in the
way that they can be considered as write only memories. An active component
can periodically give (write) data to it. An actuator is characterized by two
attributes:

la tency: TimeExpression. This property represents the latency related to
a write access.

writeBandWidth: BandWidthExpression. This property represents the
write bandwidth of the actuator.

4.4 Interconnection Component Refinement

To refine the concept of intercon-
nection component, we introduce one
kind of component: "Interconnect"
(Fig. 5). This component extends (in a
UML point view, but particularly in a se-
mantic point of view) the defi nition of
the interconnection component.

i n t e r connec t " Component. The
interconnect is not more precise seman-
tically than the interconnection compo-
nent defi ned in the generic part of the
profi le. It's just an interconnection en-
riched with properties used for a simula-

„ i t T , . , * • J Figure 5. Interconnection component re-
tion at a TLM level. It is charactenzed fin^ment

by two attributes:

la tency: TimeExpression. This property represents the latency related to
an access to the interconnection component.

bandwidth: BandWidthExpression. This property represents the band-
width of the interconnect.

5. Modeling examples: The TI OMAP2410 and
OMAP2420

We present in this section two modeling examples. Specifi cations are delib-
erately not complete, and are just introduced for an illustration purpose. We
illustrate the use of various modeling elements (refi ned or not) of our model,

«stereotype»
Interconnect

latency ;TimeExpression
bandwidth: BandWidthExpression
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and the use of the inheritance mechanism of UML to defi ne an hardware archi-
tecture by extension of another one.

The OMAP2410 and OMAP2420 processors are based on 0MAP2 "All-
in-One Entertainment" architecture [Texas Instruments, 2004]. They are de-
signed to be used into smart-phones and portable media devices. They support
high-end features such as multi-megapixel cameras, hifi music with 3D sound
effects, high-speed wireless connectivity and more.

The OMAP2410 processor (Fig. 6) consists of an ARM 11 that handles the
operating system tasks and a TMS320C55 that works on the audio and video
applications. It also contains additional features such as a hardware engine for
three-dimensional images, a MMU (memory management unit), and interfaces
to LCD/Camera, USB devices, and peripherals. Communications are made via
a low-latency interconnection component.

The OMAP2420 processor (Fig. 8) is an extension of the OMAP2410. It
extends the features of the 2410 with an IVA (Imaging Video Accelerator)
and a 5 Mbit SRAM supporting a VGA display. As illustrated in Fig. 7, the
OMAP2420 inherits the defi nition of the 2410.
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6. Conclusion

We have shown how we use UML 2 as an ADL, focusing on the hardware
model of our approach. The model we have presented enables a description of
hardware architectures at a high abstraction level. This model is implemented
in a UML profi le. This profi le introduces generic concepts, with clear semantic
and syntaxic basis, that can be refi ned for particular use. We gave an example
of profi le refi nement to get relevant informations from a simulation at a TLM
level, and we illustrated our subject with the modeling of the TI OMAP2410
and OMAP2420.

This is only the fi rst step of our approach. We are currently working on
mechanisms to express repetition of architectural elements. It enables for ex-
ample to easily model regular hardware architectures such as hypercubes, or
complex interconnection networks such as Omega networks. The repetitions
are expressed in the context of the "RepetitionHwComponent", with mecha-
nisms similar to ones used in the application model to express data parallelism
via dependency expressions.

Moreover, we plan to soon introduce behavioral descriptions of hardware
components. Typically, such informations would be taken into account in our
simulation environment. For example, it would be useful the describe the be-
havior of a shared interconnect element (priority policy) to get informations
about latency.
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Notes

1. As we'll see later, we just tell which functions can be executed by a processing unit

2. This restriction does not mean that the usage of the other UML elements are forbidden. It only
means that all the elements added by a user in a model will not be taken into account by tools which exploit
the profi le.

3. We are investigating the introduction of activity diagrams, and possibly state diagrams, to model
hardware architecture behavior

4. In this document, the term 'Component" refers to UML 2 'StructuredClass".

5. This kind of component is part of a work in progress and will not be detailed in this paper.

6. A 'required port" refers to a port with a required interface , and a 'provided port" refers to a port
with a provided interface.

7. The way to restrict a list of executable functions is not described here. This problem is rather related
to the association model.
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Abstract Designing, testing, and producing a new computer processor is a complex and
very expensive process. To reduce costly mistakes in hardware, the microarchi-
tecture is usually designed and tested with the aid of a software simulator. The
FAST System enables microarchitects to develop architecture simulators rapidly
and is less error-prone than using a high level language such as C. In this paper,
we describe how the FAST System's Architecture Description Language (ADL)
has been extended to facilitate the description of complex instruction sets such as
Intel's IA-32 instruction set architecture. In this respect, we demonstrate that the
notion of inheritence, a key concept in object oriented programming languages
can be extended for selective inheritence to enable the specification of complex
instruction set architectures in architecture description languages.

Keywords: Architecture Description Language, IA32, automatic simulator generation, cycle-
accurate simulators.

1. Introduction

Micro-architecture exploration is a difficult, error-prone and development
intensive endevaour. Traditionally, there has been three distinct approaches
to micro-architecture exploration; namely, hand-coding a custom simulator,
generation through a hardware description language and automatic generation
through an architecture description language.

Custom simulators for a specific architecture are hand-coded in a general-
purpose high-level-language, e.g. C. This group includes SimpleScalar, Su-
perDLX, SPIM, and URM [2, 5, 3, 9] among others. The second group in-
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gan Technological University and a CAREER award (CCR-0347592) from the National Science Foundation
to Soner Onder.
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eludes hardware description languages and simulators such as VHDL, VER-
ILOG and ELLA [1, 12, 8, 4]. Most of these simulators are very specific to
the architecture they simulate which makes it difficult to make modifications
to the ISA or the microarchitecture to see how the changes affect performance.
Ranging from several thousand to 30,000 lines of C code and taking 12-24 man
months to develop, these are complicated software systems. Such simulators
embody problems of all large scale software projects, despite the best efforts
spent to increase maintainability. Trying to study such an existing simulator's
source code and make changes without breaking anything can be problem-
atic at best. Similarly, hardware description languages are not not suitable for
micro-architecture exploration because they are designed to describe the hard-
ware.

Architecture description languages on the other hand have the ability to
specify the instruction set architecture (ISA), make automatic generation of
support tools such as the assembler and the linker possible and hide the de-
tails of instructions from the programmer. As a result, they enable a clean
model of the micro-architecture operation. More importantly, they can specify
and model the operation of the micro-architecture without tying it to a particu-
lar hardware implementation and therefore seamlessly map the instruction set
specification to the micro-architecture specification.

Flexible Architecture Simulation Tool (FAST) and its description language
Architecture Description Language (ADL) [6] is one such system, which has
been in use by a number of universities to describe and simulate micro archi-
tectures of varying complexity. Thus, FAST fills in a gap between high-level
architecture-specific simulators, and low-level hardware simulators. Doing so,
it allows automatic generation of the necessary system tools (assemblers, link-
ers, and so on) through the ADL description.

Machine
Description

(ADL)

Figure 1. FAST System Components

The Flexible Architecture Simulation Tool (FAST) System shown in Fig-
ure 1 is a collection of four main components: (a) an ADL (Architecture De-
scription Language) compiler; (b) support tools generated by the compiler (as-
sembler, disassembler, linker, etc); (c) a cycle level simulator and debugger;
(d) support tools for collecting and displaying statistics about the simulations.
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The first step is to describe the architecture in question using ADL, the Ar-
chitecture Description Language. An architecture described by ADL is made
up of two distinct sections - one section describes the ISA, and the other sec-
tion describes how the microarchitecture works (e.g., what are the pipeline
stages and what happens during each stage). The instructions are described in
a declarative form, while the microarchitecture is done in an imperative form
similar to other high-level imperative languages, like C.

As an example of an instruction, consider the add instruction shown in Fig-
ure 2 from a MIPS description. The first line describes what will be seen in
an assembly program - the add keyword followed by three registers. The emit
line tells ADL how to translate the assembly instruction into its binary rep-
resentation and consists of a series of assignments to instruction fields. This
aspect of the specification is quite similar to SLED (Specification Language
for Encoding and Decoding) [10, 11].

The attributes section serves as the glue between the instruction set spec-
ification and the micro-architecture specification and provides the necessary
abstractions for independent specification of micro-architectures from ISAs.
In particular, the micro-architecture specification makes references to instruc-
tion attributes and the ISA specification maps instruction fields as well as in-
struction particulars to these attributes. For example, the micro-architecture
specification is concerned about what is the type of the current instruction,
such as arithmetic, load, store, etc., to steer the instruction to the appropriate
processing unit. Similarly, the micro-architecture specification is interested
in knowing the values of source and destination register numbers so that in-
struction execution can be modeled, but not where these fields are located in
an instruction. The ISA specification conveniently maps the destination and
source register attributes to the appropriate fields.

Finally, the last section describes what the instruction does during a par-
ticular pipeline phase (such as s.EX): namely, the destination register gets the
results of adding the left operand to the right operand. (The operands rs, rt, and
rd are mapped to rop, lop, and dest during the decode stage of the pipeline. For
an example of the microarchitecture description, let's look at a much simplified
version of the instruction fetch stage of the MIPS pipeline shown in Figure 2.

During the prologue (the beginning of the clock tick), the instruction reg-
ister (ir) reads an instruction from the instruction cache (icache) at the current
program counter (pc), and then sets new_pc to be the next instruction, which
is pc+4 since MIPS has fixed-length 32-bit instruction words. During the epi-
logue (the end of the clock tick), the current instruction and its context are de-
livered to the next pipeline stage and sets the new value of the program counter
depending on whether or not the previous instruction was a branch instruction.
ADL also includes many basic artifacts that are generic to most architectures,
such as the memory and cache subsystems. Once the architecture has been
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add rd rs rt
emit opcode=_special rs rt rd shamt=O funct=_add

attributes ( exu

dest_type

lop_type

rop_type

i_type

dest_reg

begin

exact s_EX

dest=lop + rop;

end;

end

integer_unit,

integer_register,

integer_register,

integer_register,

alu_type,

rd )

procedure s_IF prologue

begin

ir = icache[pc];

new_pc = pc+4;

end s IF;

procedure s_IF epilogue

begin

send s_ID;

if (branch_input) then

begin

branch_input=O;

pc=branch_target;

end

else

pc=new_j)c;

new_context;

end s_IF;

Figure 2. MIPS Instruction and Micro-architecture Specification in FAST/ADL

described in ADL, the file is processed by the ADL compiler. The compiler
generates an assembler, a disassembler, and a simulator, as shown in Figure 1.

The FAST System was originally designed to be flexible enough to de-
scribe most modern architectures, including everything from as simple and
clean-cut as a RISC processor to the most esoteric and exotic digital signal
processors (DSPs). However, in early versions of the ADL compiler, certain
assumptions were made and "shortcuts" taken to make it easier to implement
FAST. Thus far, the MIPS architecture and a few variations on MIPS have been
implemented and tested with FAST. The SPARC architecture ISA has also
been specified and is in the process of being integrated with existing micro-
architecture specifications. Similarly, some DSP Extensions to ADL for use
with StarCore's SC-140 ISA have been described [7], but have not yet been
implemented in the FAST ADL compiler. These extensions include regular
expression support for addressing mode descriptions which are also useful for
x86.
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2. IA-32 Architecture

The latest incarnation of IA-32 as seen in the Pentium 4 processor has its
roots in the 8086 and 8088 processors from 1978. The ISA embodies a variable
length instruction set encoding and the processor supports many memory mod-
els including segmented memory. The architecture also include overlapping
registers. There are very few, if any, wasted bits in a typical x86 instruction.
All these properties make the Intel IA-32 architecture quite challenging for an
ADL specification.

In this section, we will take a closer look at these properties of IA-32 and
look at how we tackled these challenges.
Variable Length Instructions: Currently FAST uses a bit numbering scheme
to identify instruction fields. Although this approach is particularly appropri-
ate for fixed length instruction formats, it is not the best approach for handling
varying length instruction formats. When referencing fields in ADL, the bits
are numbered right-to-left (i.e., a 32 bit word is numbered 31 to 0, the most sig-
nificant bit in position 31). With this positioning scheme, the fields can "move"
in a variable length instruction set. For example, using the syntax [start_bit,
length], an 8-bit opcode in a 32-bit instruction is bits [31,8], but in a 16-bit in-
struction, the opcode moves to [15,8]. Furthermore, there are no special fields
in ADL, including the opcode. Rather, ADL automatically distinguishes one
instruction from another. The ADL compiler looks through all of the defined
instructions and tries to identify a unique constant valued field for each in-
struction. If a series of instructions have a constant valued field but share the
same value for all the instructions, they are grouped together and a second field
is searched for (e.g. extended opcodes). The compiler keeps looking until it
finds a unique constant valued field (or set of fields) for each instruction. This
field (or set of fields) becomes the "opcode". The compiler will have the same
problems as the programmer, if the fields start moving around because of their
variable lengths.

An x86 instruction can have up to four prefixes that modify the semantics
(e.g. to use 16-bit or 32-bit registers), one or two bytes of opcode (a few
reserved opcodes indicate to use the second opcode byte), a ModR/M byte for
memory or register arguments, an SIB byte to help the ModR/M if necessary,
and displacement and immediate fields. In other words, the fields making up
the instruction format appear depending on the particular instruction format.
The basic algorithm of discovering the opcode fields has to be modified so that
a decoder for the architecture can automatically be synthesized.
Many Memory Addressing Modes: There are many addressing modes used
in IA-32, which are, for the most part, independent of the instruction since they
are encoded using the ModR/M byte (and an SIB byte if necessary).
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Displacement (or Absolute)
Base
Base+Offset
B ase+Index+Offset
Base+(Index*Scale)+Offset
Base+Index
Base+(Index*Scale)
Index+Offset
(Index*Scale)+Offset

mov %ecx, OxDEADBEEF
mov %ecx, [%esp]
mov %ecx, [%esp-4]
mov %ecx, [%esp+%edi-4]
mov %ecx, [%esp+%edi*2-4]
mov %ecx, [%esp+%edi*l]
mov %ecx, [%esp+%edi*2]
mov%ecx, [%edi*1-4]
mov %ecx, [%edi*2-4]

Figure 3. Intel IA-32 addressing modes

IA-32 addressing modes are shown together with examples in Figure 3. The
challenging aspect of the many addressing modes in IA-32 is trying to define
them succinctly in ADL, since the fields are mostly independent of the op-
code. That is, the opcode alone does not indicate all of the fields that follow
the opcode. For example, the mov instruction shown in the above table has
the opcode of 0x89, which indicates that the opcode byte will be followed by
a ModR/M byte, with the Reg/Opcode field of the ModR/M byte selecting a
general purpose register. What follows the ModR/M byte, if anything, is indi-
cated by the ModR/M byte. Thus, each byte in the instruction provides a hint
as to what comes next.

The simplest way to approach this problem is to enumerate every possible
variation of an instruction as if it is a separate instruction, since ADL allows
instructions to be overloaded, just like functions in C++. For example, the mov
instruction overloaded for Displacement and Base addressing modes:

mov reg32 disp emit opcode=0x89 mod='00'b regop=reg32 rm='100'b disp ...

mov reg32 base emit opcode=0x89 mod='00'b regop=reg32 rm=base ...

However, this leads to the problem of having to overload the same instruc-
tion many times due to the many addressing modes. There are nine addressing
modes listed above, however, three modes (Base + Displacement, Base + In-
dex + Displacement, and Base + (Index*Scale) + Displacement) can use either
an 8-bit or a 32-bit displacement, giving us 12 effective modes. Furthermore,
there are restrictions on when %esp and %ebp can be used for base or index
registers. Treating these restrictions as special addressing modes (which would
be necessary in the current version of ADL) gives us 6 additional special case
modes, for a total of 18 addressing modes!

Creating separate ADL instruction definitions for every combination of x86
opcode with addressing mode would generate thousands of ADL instructions.
This is tedious and highly error-prone.
Overlapping Registers: The IA-32 architecture is 99.9% fully backwards
compatible with the original x86 processor (the 0.1% difference is the addi-
tion of certain instructions that allow the processor to switch between operat-
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ing operating modes, e.g., protected mode, system management mode, or real
mode). One of the features of this backwards compatibility is a set of registers
that have overlapping parts.

IA-32 includes eight 32-bit general purpose registers: EAX, ECX, EDX,
EBX, ESP, EBP, ESI, and EDI. However, in order to maintain backwards com-
patibility, there are aliases for 8-bit and 16-bit parts of the registers. For ex-
ample, AL, AH, and AX all describe different parts of the EAX register. AL
and AH are two 8-bit registers that represent the lower and upper 8 bits of the
16-bit register AX, and AX is the low 16 bits of the 32-bit register EAX.

EAX
AX

AH AL

31...24 23...16 15...8 7...0

Registers ECX, EDX, and EBX are broken down in a similar fashion. Reg-
isters ESP, EBP, ESI, and EDI have aliases for the lower 16 bits SP, BP, SI, and
DI respectively. As a side note, while the above eight registers are noted as
general purpose, the registers occasionally have special uses, hence the seem-
ingly obtuse names of the registers.
Mixed Arguments: Unlike RISC architectures, instructions in CISC machines
can operate directly on memory. That is, RISC machines, or load-store archi-
tectures, only have two instructions that can operate on memory, load and store,
while all other instructions must operate on registers. CISC instructions have
no such restrictions. This leads to instructions that can have a variety of argu-
ments. The mov instruction takes two arguments, a source and a destination,
one of which must be a register, the other can be either a register or a mem-
ory address. The address can come in any one of the 18 modes listed above.
In addition to creating a plethora of instructions (also described above), many
instructions will need to access memory at some point during the execution
which will result in a lot of replicated ADL code (i.e., every instruction de-
scription will contain the same copied-and-pasted ADL code to read from or
write to memory).

Although some of these issues have been addressed within the context of
instruction set specification with the SLED approach, as it can be seen, the
approach taken by SLED is inadequate for automatic generation of simulators.
Although one can describe x86 ISA in less than 500 lines of code in SLED,
the language was only designed for encoding and decoding instructions (as
the name implies). Many instructions in x86 are encoded/decoded the same
way with the only difference being the opcode, so patterns are used to define
many instructions in one line. On the other hand, in order to tie in the micro-
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architecture specification, one needs to be able to specify the semantics of
each instruction. Since the semantics of each instruction are very different,
attaching semantics to many opcodes cannot be done with one line, and an
alternative technique must be sought.

3. Our Solutions

An IA-32 processor can run in many different modes. For the purposes of
our work, we were able to simplify the model with a few assumptions and re-
strictions: (a) no segmented memory (i.e., flat address space); (b) 32-bit mode
(16-bit instructions require 0x66 prefix); (c) no 36-bit Physical Address Exten-
sion (PAE) support; (d) no ISA extensions (MMX, SSE, SSE2).

We made these restrictions based on the way modern applications run on x86
platforms. Very few programs use segmented memory except the occasional
device driver. 16-bit mode is only used when running old programs compiled
for DOS or Windows 3.1 and earlier. 36-bit PAE mode is only used by pro-
grams with intense memory requirements on high end servers, such as large
database systems that require more than 4GB of RAM. We chose to exclude
MMX, SSE and SSE2 for now in order to get a framework in place; when this
is done, the new instructions will be easily added with little or no changes to
the framework necessary.
Variable Length Instructions: In the previous version of ADL, fields could
be defined in any order since the start bit dictated where it would actually
appear. This freedom is lost, but it was rarely (if ever) taken advantage of.
Therefore, the problem of variable length instructions is addressed by remov-
ing the requirement that the start bit of individual fields need to be specified.
Instead, the fields of an instruction now need to be specified in order and only
the length of the field needs to be specified. With this scheme the compiler may
look through every instruction and identify the longest instruction and use its
length for a pseudo-fixed-length instruction (for x86, this will be 16-bytes, or
128-bits). Then the compiler can internally generate the start bits for each field
based on this length (thus, for x86, the opcode will always be [127,8] (note
that opcode prefixes are really just special opcodes)). Undefined fields will not
generate pad bits in the encoded binary; i.e., a 16-bit instruction will only have
bits 127 through 111 defined, but the binary encoding of the file will not have
111 padded bits following the instruction.
Addressing Modes and Regular Expressions: The DSP Extensions use a
combination of flex-style regular expressions with register variables. We will
use these extensions for x86 as well, with the addition of typesets. The syntax
is fairly straightforward as shown in Figure 4.

The regular expressions in the addressing mode define the syntax of the ad-
dressing mode, but they do not define the semantics. For example, in base index
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# create groups of registers.

# Registers may exist in multiple sets,

typeset

reg32 {%eax,%ecx,%edx,%ebx,%esp,%ebp,%esi,%edi},

regl6 {%ax,%cx,%dx,%bx,%sp,%bp,%si,%di},

reg8 {%al,%cl,%dl,%bl,%ah,%ch,%dh,%bh},

reg32_noESP {%eax,%ecx,%edx,%ebx,%ebp,%esi,%edi},

reg3 2_noESBP {%eax,%ecx, %edx,%ebx,%esi, %edi},

reg32_noEBP {%eax,%ecx,%edx,%ebx,%esp,%esi,%edi},

scaleVals { 1, 2, 4, 8 };

#- Instruction fields

#

type

s8 signed integer var iable 8 b i t ,
sl6 signed integer var iable 16 b i t ,
s32 signed integer var iable 32 b i t ;

addressing modes
disp32 s32,
base
base_index
base_index_scale
index_disp32

reg32_noESBP • ' ] " ,
reg32_noEBP [-+] reg32_noESP " ] " ,
reg32_noEBP [-+] reg32_noESP * scaleVals " ] " ,
reg32_noESP * 1 [-+] s32 "] ",index_scale_disp32
reg32_noESP * scaleVals [-+] s32 " ] " ,

Figure 4. Use of typesets to describe addressing modes

mode above, the assembler does not know if reg32_noEBP is the base or the
index; it only knows to expect a 32-bit register excluding %ebp. Mapping
the two registers to some meaningful value like base or index is handled by a
user-defined procedure.
Instruction Templates: Most of the problems we encountered (overlapping
registers, variable length instructions, etc.) were handled by a simple exten-
sion of ADL or modification of an existing syntax. The real problem with x86
was the combination of instructions with multiple addressing modes. With
over 400 instructions and many of them using up to 18 modes for memory
addressing, plus register-to-register arguments, we could easily end up with
thousands of descriptions if we were to enumerate each permutation as a sep-
arate instruction.

We toyed with many ideas for reducing the number of enumerations. Al-
though it is possible to write a wrapper program to enumerate the instructions
and generate the ADL code, such a solution is specific to the instruction set at
hand and defeats the purpose of using an architecture description language in
the first place. What is needed is to increase the power of the ADL so that these
instructions can also be specified seamlessly and naturally. Furthermore, to a
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lesser extend similar problems make RISC instruction set descriptions in ADL
also somewhat longer than necessary. Therefore these language extensions can
be generic enough to be useful for other architectures (e.g., making the exist-
ing MIPS implementation shorter and more concise with our new language
extensions).

Our careful study of the SLED encoding scheme where patterns are exten-
sively used lead us to believe that it may be possible to define an encoding
pattern for the addressing modes and let each instruction inherit the right pat-
tern? This turned out to be the key idea for the x86 extensions to ADL: treat
instructions as objects and use multiple inheritance with a twist!

The encoding patterns would be defined by a series of templates, and the real
instructions would inherit the properties from these patterns. The objects in
ADL are the instruction templates and the instructions themselves. Templates
differ from normal instructions in two ways.

Fields in instruction templates can be grouped or made optional with the use
of regular-expression like syntax. Parentheses group fields together, (fieldi field2
...), to indicate that all of the fields in the group must appear together. That is,

fieldi cannot exist withouty*eW2 , and vice-versa. This is useful for larger fields
like the ModR/M byte in IA-32, which consists of three smaller fields: the 2
bit mod field, the 3 bit reg/op field, and the 3 bit r/m field, used to describe how
memory and/or registers will be addressed. A T following a field indicates
the field is optional. For example, the SIB byte is optional depending on the
ModR/M byte, thus, it appears as (scale index base)? . A '?' is really just
shorthand for { n,m } syntax (where n=0 and m=l) which says the previous
item must appear at least n times but no more than m times. Finally, a | indi-
cates logical-or, useful for fields that vary in size. Some instructions have 8-bit
immediates, others 16-bit, and others 32-bit, and others none at all, so, putting
it all together: (imm8 | imm16 | imm32)?

Templates do not exist in the actual instruction set. That is, when the gener-
ated assembler is assembling code, it will never try to match a template with a
real assembly instruction.

Templates can inherit properties from other instruction templates and over-
ride fields or sections from the parent. This allows creation of a master tem-
plate. A master template is really just another template (i.e., it is not a special
type of template), but it helps the programmer avoid syntactical errors. In IA-
32, there is one general instruction format:

[Prefixes | Opcode | ModR/M | SIB | Disp | Immediate |

In this format there may be up to 4 prefixes, where each prefix is 1 byte
long. The opcode field can be 1 or 2 bytes long and is followed by the op-
tional ModR/M and SIB bytes. Displacement and the Immediate fields can be
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anywhere from 0 to 4 bytes, templates and instructions inherit the properties
illustrated in Figure 5.

instruction template

begin

intel # no arguments given

emit prefixl? prefix2? prefix3? prefix4?

opcode{l,2}

(mod reg_op rm)?

(scale index base)?

(disp8 | displ6 | disp32)?

(imm8 | imml6 | imm32)?

attributes

(i_class : intel_class,

op_type : intel_ops )

begin

exact s_MEM_LD

# read from memory, if necessary

end;

exact s_EX

# execute stage

end;

exact s_MEM_ST

# write back to memory, if necessary

end;

end, ....

intel_r8_bis rd8 base_index_scale inherits intel

emit opcode=0xFl mod=00 reg_op=rd8 rrn=100

scale=<base_index_scale.scale>

index=<base_index_scale.index>

base=<base_index_scale.base>

begin

exact s_MEM

# calculate address = base + (index * scale)

# load from memory: temp = dcache[address]

end;

end,

Figure 5. Instruction templates and Using inheritance

The first item to notice is on the 3rd line, no arguments are given to the
generic instruction name intel. The non-existent arguments will be overrid-
den by the following templates. The emit line, on the other hand, defines
every possible field that might be emitted by a descendant and uses the ? and
{n,m} modifiers to indicate optional fields. Only two attributes are defined at
this time; more will probably be needed when the microarchitecture is imple-
mented. Finally, there are three pipeline stages used to execute the instruction,
an execute stage and a memory access before and after the execute stage for
those instructions that need it (more on this below). Again, the pipeline stages
may change with implementation of the microarchitecture.
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An instruction that inherits from this intel master template is free to override
the arguments, any of the emit fields, any of the attributes, or any pipeline
stage. (Note that if a pipeline stage is overridden, the entire stage must be
overridden, even if only one line is changed.) Inheritance is indicated by the
inherits keyword following the instruction's arguments as shown in Figure 5.

The template intel_r8_bis has two arguments, an 8-bit destination register,
rd8, and a memory location addressed by base_index_scale mode. It inher-
its from the intel master template and then defines exactly which fields will
be emitted for this type of instruction. The scale, index, and base functions
are built-in to the ADL language and, with the help of the regular expressions
for the addressing modes, return the respective values for scale, index, and
base. Finally, the s_MEM pipeline stage is used to load a byte into a tempo-
rary pipeline register which will be used by the s_EX stage in instructions that
inherit from this template. (The code to actually load from memory will be
specific to how the microarchitecture is implemented, so for now we describe
what has to be done in comments.)
Memory Addressing and Conditional Inheritance: Once all the templates
are defined as shown above, the final step is to create conditional inheritance.
This borrows from the idea of multiple inheritance, except instead of inheriting
all of the features from the parents, it only inherits from the one parent with the
best fit. The best fit is determined by the arguments to the instruction. (Note
that this implies the inherited arguments must be unambiguous.)

This allows us to create one template for each addressing mode. Each tem-
plate will have the emit fields defined and other common properties. The child
that inherits from the template then overrides the emitted opcode field and de-
fines in the pipeline stage what exactly the instruction does (i.e., the semantics
that make languages like SLED unfeasible for our work). The common ad-
dressing modes are then combined using the conditional inheritance feature
into one template which the real instructions will inherit from. To reinforce the
idea that this is not traditional multiple inheritance, the | operator (logical or)
is used to split parents. For example, instructions that have a 32-bit register for
a source and a 32-bit word in memory for a destination would inherit from the
intel_r32_rm32 template that is shown in Figure 6.

Each of the 18 templates intel_r32_rm32 inherits from define an addressing
mode (there are 12 modes plus 6 special modes for using %esp or %ebp as a
base register). A real instruction then inherits from intel_r32_rm32 as shown in
Figure 6. To see this in action, consider the following x86 instructions:

mov %eax, DWORD PTR [%esp - 4]
mov %eax, DWORD PTR [%esp + %ebp*4 - 4]
mov %ax, WORD PTR [%esp - 4]

The instruction is the same in both cases, movl, but the arguments differ.
However, they differ in a unique and unambiguous way which allow the com-
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intel r32 rm32 inherits

intel_r32_d32
intel_r32_id32
intel_r32_bisd8
intel_r32_b_esp
intel_r32_bi_ebp

intel_r32_b
intel_r32_isd32
intel_r32_bd32
intel_r32_b_ebp
intel_r32_bis_ebp

| intel_r32_bi
| intel_r32_bd8
| intel_r32_bid32
| intel_r32_b_bd8_esp

intel_r32_bis
intel_r32_bid8
intel_r32_bisd32
intel_r3 2_bd3 2_esp

)
mov inherits intel_r32_rm32
begin

exact s_EX
rd32 = temp;

end;
end,

emit opcode=0x8B

Figure 6. Conditional Inheritance and example instruction using inheritance

piler to match it against only one parent. The first instruction matches in-
tel_r32_rm32 and its parent intel_r32_bd8 (base + 8-bit-displacement) (techni-
cally it also matches intel_r32_bd32, but the compiler will be smart enough to
choose an 8-bit-displacement if it can via a pragma). Likewise, the second
instruction matches intel_r32_rm32 but with a different parent, intel_r32_bisd8.
The third instruction matches none of the parents in intel_r32_rm32, so the
compiler looks for another instruction to match against (which, in this case,
will be mov inherits intel_r16_rm16 and its parent intel_r16_bd8).
Overlapping Registers: C style unions and typesets were introduced to deal
with overlapping registers. First, the physical registers are defined as generic
32-bit registers, then a union is used to define the symbolic registers and which
parts of the physical register are used in [start-bit, length] notation and finally,
a typeset is used to group the registers together into logical sets.

register file
gpr [8, 32] # 8 registers, 32 bits each
%regO 0, %regl 1, %reg2 2, %reg3 3,
%reg4 4, %reg5 5, %reg6 6, %reg7 7;

%eax %regO[31, 32], %ecx %regl[31, 32],
%ax %regO[15, 16], %cx %regl[15, 16],

%regO[7, 8], %regl[7, 8],

# 32 bit registers
# 16 bit registers
# 8 bit low registers

# 8 bit high registers
%ah %regO[15, 8], %ch %regl[15, 8],
%dh %reg2[15, 8], %bh %reg3[15, 8];

typeset
reg3 2 {%eax,%ecx,%edx,%ebx,%esp,%ebp,%esi, %edi},
regl6 {%ax,%cx,%dx,%bx,%sp,%bp,%si,%di},
reg8 {%al, %cl,%dl,%bl,%ah,%ch,%dh,%bhj;

Typesets are also used to place registers into special groups. For example,
the %esp and %ebp registers cannot be used as a base register in base address-
ing mode, so a special group is created minus those registers.
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typeset reg_noESBP { %eax, %ecx, %edx, %ebx, %esi, %edi };

Typesets can be used to group more than just registers. The opcode prefixes
are defined as bitconstants and are split into four groups and only one prefix
from each group can be used in an instruction. The typeset is used to define
the groups.

typeset
pref ix_lock_repeat {_lock,_repne,_repnz,_rep,

_repe, _repz },
prefix_segment_branch {_cs_seg,_ss_seg;_ds_seg,

_es_seg,_fs_seg, _gs_seg,
_b_not_taken, _b_taken },

prefix_operand { _operand_size },
prefix_address { _address_size };

Mixed arguments: The mixed argument problem is also solved through inher-
itance. The microarchitecture pipeline has not been defined in this paper, but
at least three stages will be needed: two memory access stages with an execute
stage in the middle. This can be implemented as one major cycle with 3 minor
cycles: s_MEM_LD to load from memory, s_EX to execute the instruction, and
s JVIEMJST to store the results back to memory.

The instruction templates have code in the load and store minor-cycles that
either load from memory into an internal temp register or store the data in
temp back to memory. The execute stage uses the temp register instead of
the second argument. Thanks to inheritance, this is mostly masked from the
final instruction's description. The only concern an instruction has is whether
it's working on register-to-register operands or a combination of registers and
memory. It can tell which type it is by checking the inherited op_type attribute:

mov inherits intel_rm32_r32
emit opcode=0x89
begin

exact s_EX if op_type == reg_to_reg then
rd32 = rs32;

else
rd32 = temp;

end;
end,

In the above figure, a pipeline with three stages is shown. Real implemen-
tations of x86 are typically not pipelined due to the difficulties as seen above
(instructions operating directly on memory). In order to pipeline x86 proces-
sors, such as the Pentium, the processor converts the x86 instruction into a
series of micro-operations, and these RISC-like micro-ops are pipelined.
Multiple Choice: An interesting feature of the x86 instruction set is how there
is often more than one way to encode an instruction. This is usually due to the
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shortcut opcodes for tasks instructions used often enough to warrant a short-
cut. For example, push %eax, could be encoded two different ways such as
[opcode=0xFF mod=ii regop=110 rm=000] as well as [opcode=0x50].

The push %eax instruction is used often enough that a special opcode was
created just for it. The upside is that it saves a byte of memory. The downside
is it presents the assembler with a dilemma on encoding the instruction. Fortu-
nately, the dilemma is resolved easily enough - chose the instruction with the
shortest encoding.

4. Conclusions and Future Work

The x86 is a powerful and compact ISA, but it's this same compactness that
makes it so difficult to work with (in compilers, in simulators, and more). We
have shown that by introducing the notion of conditional multiple inheritance
we have tackled the most difficult challenges of x86 within the realm of an
architecture description language.

Our future work on IA-32 on FAST can be broken into two broad areas,
namely the implementation of the language constructs in the ADL compiler
and the completion of the micro-architecture specification. Once running sim-
ulators are successfully generated from the ADL specification, we are planning
to remove the restrictions and add the MMX and SSE/SSE2 instructions to the
ISA.
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COTRE AS AN AADL PROFILE

Patrick Farail, Pierre Gaufillet
Airbus France, 316 route de Bayonne, 31060 Toulouse Cedex 03, France
Abstract: The COTRE Architecture Description Language, developed during the

COTRE project, allows software designers to describe hierarchically static and
real time architectures, their behavior and their functional or non-functional
requirements. Due to different needs at the user and at the verification levels,
the COTRE language has been split early in the project into 2 specialized sub-
languages named respectively UCOTRE (User-COTRE) and VCOTRE
(Verifkation-COTRE). As the UCOTRE concepts are very close to the AADL
ones, and to avoid defining 2 concurrent languages, UCOTRE has become an
AADL dialect, using its extension mechanisms. This paper focuses on the
UCOTRE description as a set of extensions and restrictions to AADL.

Keywords: Architecture Description Language, Real Time, Software engineering, model
checking, modeling, COTRE, AADL

1. INTRODUCTION

With the increasing size and complexity of embedded systems, it is more
and more important to have development methods allowing to keep the
products mastery and to ensure working order and safety. This is all the
more true for equipment like some avionics computers, and more generally
for critical systems (flight commands, engine controller, nuclear domain,
etc.). For this kind of product, we have to deal not only with functional
requirements, but also with non-functional aspects like time, reliability and
performance constraints.

By aiming to provide a design methodology and tools based on dynamic
(aka threads, semaphores, buffers, ...) and static (modules, objects,
classes,...) software architecture modeling, the COTRE research project
addresses this problem1'2.
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Graphic model

JUCOTRE|

Tools formalisms
(TS, TA, TPN, etc.)

i
Contracts

(temp, logic, behavior)

Verification tools

Figure 1. The COTRE transformations

Started at the beginning of 2002, the COTRE project has been funded by
the French Ministry of Research & Education through the RNTL (Reseau
National des Technologies Logicielles - Software Technologies National
Network) for 2 years. This project gathers an end user, AIRBUS France3, a
software tool editor, TNI-Valiosys4, FeRIA5 - CNRS LAAS6, UPS IRIT7

and ONERA-DTIM8 - and ENSTB9 as academic partners specialized in
formal languages and verification techniques.

As the ADL (Architecture Description Languages) are used to describe
structural decomposition of systems and interactions between their
components, it seems natural to express the COTRE models in a such
language. The COTRE language, in addition to the common features of
ADL, must:
• allow to describe formally the constraints the system must comply with,
• allow to describe formally its behavior,
• and have an associated graphic expression to make easier the system

designer job.

To allow to work more easily on the user level modeling and on the
verification layers, the abstract COTRE language is divided into two
languages : the UCOTRE language, standing for User COTRE, and the
VCOTRE language, for Verification COTRE. VCOTRE can be seen as an
intermediate language between UCOTRE and the specific formalisms used
by the verification tools (see Illustration 1). UCOTRE and VCOTRE should
ultimately merge into an unique COTRE language.



Architecture Description Languages 169

The proximity of the UCOTRE needs and the AADL (Architecture
Analysis & Design Language, formerly known as Avionics Architecture
Description Language) ones leads us to open technical discussions with the
AS-2C SAE subcommittee10 in charge of its development.

In the description of the VCOTRE language11, translations in the chosen
verification formalisms (Time Petri Net, Timed Automata, Temporal/Timed
Logics) and an application example are presented. Verification techniques
which we are implementing in the COTRE platform, are based on formula
satisfaction (temporal logic model checking) or on model comparison
(behavioral equivalencies). Expressing and checking these properties may
require different models, methods and tools, each kind of model typically
comes with its tool suite. In the context of COTRE, the following tools have
been investigated : UPPAAL12, SMV13, TINA14, LPV15.

In this paper, we will focus on the UCOTRE language, and its building
based on the AADL. The section 2 deals with the AADL extension
mechanisms, and the section 3 exposes, around a complete example already
studied at the VCOTRE level1, the main aspects of the UCOTRE language.

2. THE AADL EXTENSION MECHANISMS

The AADL core, in its version 0.96, offers 2 main extension
mechanisms :

• Property sets : each architecture element can be associated statically
with named values. The names, as their allowed values and the element
types they can be associated to are described thanks to the property set
statement.

PROPERTY SET myext IS
int : TYPE INTEGER -32767..32768;
duration : TYPE UNITS (s, j => s * 86400,

h => s * 3600,
min => s * 60,
m s = > s * 0.001,
us = > s * 0.000001);

rate : float => 0.0 APPLIES TO (SUBPROGRAM);
END myext;



170 Architecture Description Languages

In this example, my_ext : : i n t and my__ext: : d u r a t i o n are 2 new
property types, and my_ext : : r a t e is a new property of type f l o a t ,
with a default value of 0 . 0, only usable for subprograms.

• Annexes : specific sections called annexes can be added to every
AADL component. The content of the these annexes is entirely defined
by the user. If a software tool does not know an annex, it just has to
ignore it. In this way, a minimum compatibility level is ensured.

SYSTEM IMPLEMENTATION ex.default
ANNEX <name> IS
<free syntax>

END ANNEX <name>;
END ex.default;

3. THE UCOTRE LANGUAGE

The UCOTRE meta-model was initially derived from the HOOD one
(both HOOD 4 and HRT-HOOD16) and from real time objects used in the
AIRBUS development process. When the UCOTRE language started to get
closer to AADL17, some new concepts had to be added, as the AADL types /
implementations / instances features for example.

At this moment, some features are not supported in UCOTRE. The most
important limitation is the lack of ports : as in the HOOD model, and
because UCOTRE currently is not intended to handle multi-applications
architectures, components communicate only thanks to subprogram calls.
Nevertheless, ports should be used in a later version of UCOTRE to model
communications between applications.

The software architecture presented here is called deadlockverification.
This example has already been used to illustrate the VCOTRE language18. In
this system, as represented in Illustration 2, two periodic processes t_l and
t_2 use 2 semaphores semi and sem2 in the same or in the inverted order.
The verification problem consists in the analysis of the deadlock possibility.
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]
1
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Figure 2. deadlock_yerification HOOD view

The architectural description of this system with UCOTRE is :

SYSTEM deadlock_verification
END deadlockverification;

SYSTEM IMPLEMENTATION deadlock_verification.default
SUBCOMPONENTS
dp : PROCESS Partition.A;

ANNEX cotre.guarantees IS
IS ALIVE;

END ANNEX cotre.guarantees;
END deadlock_verification.default;

sys_deadlock_instance: SYSTEM ex_deadlock.default { } ;

PROCESS Partition
END Partition;

PROCESS IMPLEMENTATION Partition.A
SUBCOMPONENTS

t_l : THREAD t.tl(seml => sem_l, sem2 => sem_2);
t_2 : THREAD t.t2(seml => sem_2, sem2 => semi ) ;
sem_l : DATA semaphore.default;
sem_2 : DATA semaphore.default;

END Partition.A;
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This system only consists of the application dp, which contains the 2
threads t_l and t_2 and the 2 semaphores sem_l and sem_2. Inside this
fragment, you can notice :
• first, the definition of the type of system deadlock_verification,
• then, the definition of the implementation of this type,
• and finally the instantiation of the system. This instance corresponds to

the HOOD systemconfiguration concept.

At this level, the only COTRE specific construction is the contract IS
ALIVE inside the c o t r e . g u a r a n t e e s annex, ensuring the system can
not reach a deadlock. The UCOTRE contracts have been almost directly re-
used from the VCOTRE layer1. They can express assumptions about
component environment by the mean of the cotre. assumes annexes, and
guarantees about component behavior in the cotre.guarantees annexes. It
can be done using high level assertions or behavioral equivalences (based on
automata).

ANNEX cotre.guarantees | cotre.assumes IS
((<assertion> | <behavioral equivalence>);)

END ANNEX cotre.guarantees | cotre.assumes;

The following assertions are defined :

Table 1. Assertions

Assertion Formal
description

Comments

potentially reset

unavoidably reset

is alive

AG EF init

AG AF init

AG EF EXctrue

no livelock

invariant<exp>
<expl> leads to <exp2>
[within <exp3>]

AG AF EXctrue

AG <exp>
AG(el=>AF<=d e2)

From any state, the component
may go back to its initial state.
From any state, the component
must go back to its initial state.
Some actions have always to be
possible in the future. Applied
to a root component, this
assertion implies that there is
no deadlock.
The component must not stay
forever idle.
<exp>has always to be true.
The occurrence of <expl>
always implies the occurrence
of <exp2> in less time than
<exp3>.
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Assertion Formal
description

Comments

reachable<exp 1 > [from AG(e 1 =>EF<=cj e2) The occurrence of < e xp 1 >
<exp2>] [within <exp3>] may imply the occurrence of

<exp2> in less time than
<exp3>.

<expl> after <exp2> AG(-~'EU(-|e2, el)) <exp2>always occurs after
<expl>.

Using the syntax below, 3 equivalencies, with an increasing
discrimination power, can be used :
• language equivalence : ensures that the observable executions of the

abstract and real behaviors are the same. It takes into account neither the
possibility of locking (states without any observable action) nor the
possibility of divergence (infinite execution implying only non
observable actions).

• observational equivalence : in addition to language equivalence, it takes
into account locking states and the conservation of non determinism.
Divergent executions are ignored.

• branching equivalence : in addition to observational equivalence, it
takes into account divergent executions.

BEHAVIOR(<convention> equivalence)
STATES
<state name>(, <state name>)* : STATE;
<state name> : INITIAL STATE;

TRANSITIONS
<transition 1>;
<transition 2>;

<transition n>;
END;

Let see now how the threads are modeled :

THREAD t
REQUIRES

semi : DATA ACCESS semaphore;
sem2 : DATA ACCESS semaphore;
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ENDt;

~ definition of the thread family
THREAD IMPLEMENTATION t t l
PROPERTIES
Period => 13.96ms;
cotre::Priority => 1;
cotre::Phase => 0.0ms;
DispatchProtocol => Periodic;

ANNEX cotre.behavior IS
STATES

sO, si, s2, s3, s4, s5, s6, s7, s8 : STATE;
sO : INITIAL STATE;

TRANSITIONS
sO -[ ]-> si { periodic_wait};
si -[ ]-> s2 { COMPUTATION(1.9ms, 1.9ms)};
s2 -[ semi.wait! (-1.0ms) ]-> s3;
s3 -[ ]-> s4 { COMPUTATION^, lms, 0.1ms)};
s4 -[ sem2.wait! (-1.0ms) ]-> s5;
s5 -[ ]-> s6 { COMPUTATION(2.5ms, 2.5ms)};
s6 -[ sem2.release ! ]-> s7;
s7 -[ ]-> s8 { COMPUTATION(1.5ms, 1.5ms)};
s8 -[ semi.release !]-> sO;

END ANNEX cotre.behavior;
'END t t l ;

First, the thread type declares to need 2 semaphores in the core AADL
syntax. The implementation t.tl then shows an use of the COTRE properties
c o t r e : : P r i o r i t y and c o t r e : : Phase . The properties below,
absent from the AADL core, are required for COTRE and defined explicitly
in its property set:

Table 2. The COTRE property set

Name Type Applies to Default Notes
value

cotre: :Description string every component -
/ sub-component

cotre: :Min Time time THREAD

Informal comments.

Minimum time
between 2
execution of a
sporadic thread.
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Name

cotre::Phase

cotre::Priority

cotre::Protected

cotre: .'Reentrant

cotre: :Requirements

Type

time

integer

boolean

boolean

string

Applies to

THREAD

THREAD

SUBPROGRAM

SUBPROGRAM

every component
/ sub-component

Default
value
0.0s

-

false

false

Notes

Phase of the
beginning of
execution for
periodic threads.
Base priority of the
thread (the precise
semantic depends
on the scheduling
policy).
t r u e if the
subprograms calls
are exclusive,
f a l s e if they are
concurrent.
t r u e if the
subprogram is
reentrant, and
f a l s e if not.
Requirements
tracability
informations.

The definition of the t.t2 implementation is identical excepted for the
p e r i o d property, which is 17.26ms.

Finally, here is the semaphore model:

DATA semaphore
PROVIDES
wait: SUBPROGRAM;
release: SUBPROGRAM;

PROPERTIES
cotre: Protected => TRUE; ~ wait and release are exclusive

ENDsemaphore;

DATA IMPLEMENTATION semaphore.default
PROPERTIES

sem_p::Max_tokens => 1;

~ Ensures the number of tokens remains in the authorized range
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ANNEX cotre.guarantees IS
INVARIANT tokens < Maxjokens;
INVARIANT tokens >= 0;

END ANNEX cotre.guarantees;

ANNEX cotre.behavior IS
VARS

tokens : INTEGER O.+infmity;
INITS
tokens := sem_p::Max_tokens;

SUBPROGRAM wait
STATES

sO, si : STATE;
sO : INITIAL STATE;

TRANSITIONS
sO -[ WHEN tokens > 0 => CALLED ? ]-> si {tokens := tokens -

i};
si -[ RESUME ]->s0;

SUBPROGRAM release
STATES

sO, si : STATE;
sO : INITIAL STATE;

TRANSITIONS
sO -[ WHEN tokens < capacity => CALLED ? ]-> si {tokens :=

tokens + 1 };
si -[ RESUME ]->s0;

END ANNEXcotre.behavior;
END semaphore.default;

For any component, behavior is described thanks to Mealy machines. In
the thread case, an automaton is globally linked to the object, when one is
required for each provided subprogram for data components. Internal
variables and their initial values have to be defined at the beginning of the
annex. The states have then to be declared, and transitions are defined in this
way:

(<label>:) <origin state> -[<clearing condition>]-> <arrival state>
{<actions>};

The clearing conditions are expressed as follow :
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WHEN <boolean condition> => Synchronization event>

And the synchronization events known are :

Table 3. Synchronization events

Events Comments
Subprogram name>! [(<parameters>)]

CALLED ?

RESUME[ (<parameters>) ]

Calls the named subprogram with the
required parameters. The subprogram is
identified by using the dotted notation
<obj e c t> .<subp rog ram>.
Parameters are separated by commas.
The subprogram being described is
called.
Give back the control to the caller (but
the subprogram being described can go
on running).

Finally, actions can be :

Table 4. Actions

Actions Comments
COMPUTATION(<max duration
range>)

DELAY(<max_duration or range >)

PERIODIC WAIT

SKIP
<l_exp> := <exp>

or Consumes a CPU time smaller then
<max_dura t ion> or bounded by
<range>.
The execution is deferred for a time
smaller than <max__duration> or
bounded by <range>.
Delays the execution of a periodic thread
until the beginning of its next period. For
an aperiodic thread, it is equivalent to
SKIP.
Does nothing.
Modifies the value of the variable
<1 exp>.

4. CONCLUSION

The COTRE project goal is to provide method and tools for real time
software architecture design & verification. The approach adopted is based
on formal languages and verification methods. The UCOTRE language is
the user view of architectures, when VCOTRE is closer to verification
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methods requirements. The proximity of the needs covered by AADL and
UCOTRE allows to use the AADL core as a base language. The extension
mechanisms defined in AADL are sufficiently powerful to take into account
the COTRE specific concepts, such as behaviors and contracts. These
COTRE developments are identified as possible annexes for future AADL
versions. Currently, the UCOTRE language is quite clearly defined, even if
some points are still under construction. But the semantic coherency is not
completely established between UCOTRE and AADL on one hand, and
between UCOTRE and VCOTRE on the other hand. These precise
mappings are being studied, as well as between the HOOD graphical
representation and UCOTRE. A demonstration toolkit, able to assist
designers from the graphical modeling until the formal verification is also in
progress.
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Abstract: The part of embedded electronic systems in vehicles is nowadays growing.
The European EAST-EEA project aims to bring efficient methods and tools
for mastering the complexity of these systems. We present EAST-ADL, an
Architecture Description Language developed in this project et show how the
verification and validation activities are linked to this language.

Keywords: ADL, Verification, Validation, Requirements, Real-Time Systems.

1. INTRODUCTION

For economical and technological reasons, the part of electronic and
software is increasing significantly in automotive systems. The main
characteristics of these systems are their distributed nature and the fact that
they have to provide a level of quality of service fixed by the market, the
safety requirements and the cost requirements. Furthermore, their
development process is shared between different partners. Therefore their
development and their production have to be based on a suitable
methodology including modelling, validation, optimisation and test.
Obviously, any error detected during the integration step leads to a costly
feedback on the specification or design activities, and it must be avoided. So,
in order to improve the quality of the design process, new methodologies are
emerging. In particular, the actors implicated in the development of a system
apply more and more methods and techniques ensuring the correctness of
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subsystems as early as possible in the design stages and a new trend is to
consider the integration of subsystems at a virtual level \ This means that
each partner involved in the development process will be able to design,
prove and validate the models of each subsystem with respects to the
requirements. Then the challenge is the validation of the whole system in a
cooperative way. This paper demonstrates how the EAST-EEA project 2

brings some solutions to this challenge.
Specifically, the section 2 describes some approach related to this

problem. A brief presentation of the context, the objectives and main results
of EAST-EEA project is given in section 3. In section 4 we present how the
validation and verification activities can be modeled in a consistent way all
along the development process while section 5 focuses on performance
properties and specifies how the model of an embedded system has to be
completed in order to allow the verification process of this kind of
properties. Section 6 brings some conclusions on this proposal.

2. RELATED WORKS

The way to improve the quality and the flexibility of an embedded
electronic system while decreasing the development and production cost is
to design and validate it at a virtual level. The development of complex
systems requires frameworks that support functional and extra-functional
specification at different steps of the development and methods for ensuring
the system correctness. Therefore, the problem is, on the one hand, to
identify the abstraction level at which the components and the whole system
should be described. And on the other hand, in order to ensure the system
correctness, we have to identify the validation / verification activities or the
automatic generation techniques to apply. Consequently, we have to identify
the formalisms supporting the identified models. Some main keywords are
related to this problem: 1- architectures, referring to the Architecture
Description Language concept (ADL), well known in computer science; 2-
components, leading to modularity principles and object approach and 3-
Model Driven Architecture 3, well-suited to generation of correct
implementations.

An Architecture Description Language is an approach for software and
system architecture specification 4. In the avionic context, MetaH 5

developed at Honeywell, has been chosen, in 2001, as the basis for the
definition of an Avionics Architecture Desapm (AADL) standard under
the SAE authority 6. The core AADL supports system modeling and
execution platforms. It provides a way for describing control, data flow,
some non functional aspects (timing requirements, fault and error behaviors,
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time and space partitioning, safety and certification properties). Efficient
tools are provided with AADL for verification purpose as schedulability
analysis.

The Code Project7 targets the same objective. It provides a methodology for
the development of real-time avionic systems by specifying in a formal way
the links between the description of such a system expressed thanks to an
Architecture Description Language and the formal techniques relying to
verification activities. The formalisms used for verification activities are
Transition Systems, Time Automata and Time Petri Nets (tools Uppaal, Tina
or Aldebaran).

In automotive industry, recent efforts brought a solution for mastering the
design, modeling and validation of embedded systems. A first result was
obtained by the French project AEE (Embedded Electronic Architecture) 8.
A result of this project is a language named AILJTransport (Architecture
Implementation Language for Transport). It allows the specification in the
same framework of embedded architectures at several abstraction levels. The
highest one captures the requirements and give a functional view. The lowest
level models an implementation 9, 10. Two tools were developed in order to
automate scaling and verification activities. They take, as input data, the
system description in AIL_Transport. The first one is devoted to optimal
distributed code generation realized by Syndex tool n . The second one is
dedicated to performance property verification by using Opnet simulator
(www.opnet.com.). A similar work is proposed in CAROSSE 12 through a
language for implementation description (tasks exchanging messages over a
communication architecture) and a timing property verification tool hiding
the complexity of the required models.

The CLARA13 ADL is a general purpose language developed for the
design of asynchronous reactive real-time systems. Special attention was
paid to the control flows. Indeed CLARA allows to express complex
synchronization and activation laws, and timing requirements. Tools based
on Time Petri Nets can be used for verification activity at the operational
level.

Face with these works, the ITEA European project EAST-EEA, (July
2001 - June 2004), involving carmakers, suppliers and research institutes,
investigates automotive embedded architectures and development aspects. It
involves and aims to unify the concepts for automotive software
development and moves towards a common notation, the whole approach
being supported by suitable verification and validation (V&V) tools. Among
the addressed, we focus in the next sections on the Architecture Description
Language, named EAST-ADL, that was specified and on its use for the
validation and verification activities. GME2000 tool14 supports the meta
model describing EAST-ADL.
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3. EAST-ADL

The purpose of EAST-ADL is to provide a support for the non-
ambiguous description of in-car embedded electronic systems at each level
of their development. It provides a framework for the modeling of such
systems through 7 views as shown in Figure 1 15. Each view, except the first
one, capture an "architecture" this term being used with the sense of an
entity organization. Each view is the result of a specific analysis among the
development process: in EAST-ADL terminology it is called an artifact.

3.1 Abstraction layers supported by EAST-ADL

The EAST-ADL abstraction layers are quickly described hereafter.

Reflnsd Ir

Refined into

Flincta^ Design i
Areiiltedym 1

Logical II

Hardwam 1

" Bleated to

RmuKs
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Figure 1. The abstraction layers of the EAST ADL.

Vehicle View is the level where user visible features are described.
Examples of such features are anti-lock braking or windscreen wipers;
Functional Analysis Architecture level represents the functions realizing
the features, their behavior and their cooperation. There is an n-to-n
mapping between Vehicle View entities and Functional Analysis
Architecture entities, i.e. one or several functions may realize one or
several features;
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• Functional Design Architecture level models a decomposition or
refinement of functions described at Functional Analysis Architecture
level in order to meet constraints regarding allocation, efficiency, re-use,
supplier concerns, etc. Again, there is an n-to-n mapping between entities
at Functional Design Architecture level and the corresponding ones at
Functional Analysis Architecture level;

• Logical Architecture is a flat software structure where the Functional
Design Architecture entities have been instantiated. This level provides
an abstraction of the software components to implement on the Technical
Architecture. The logical architecture contains the leaf functions of the
Functional Design Architecture. From the Logical Architecture point of
view, the code could be automatically generated in many cases.

In order to model the implementation of a system, EAST-ADL furnishes,
on the one hand, a way for the description of the hardware platforms and
their available services (operating system, protocols, middleware) and, on
the other hand, a support for the specification of how a logical architecture is
distributed onto a platform. For this purpose, three additional views are
necessary:

• The Hardware Architecture level includes the description of the ECUs
(Electronic Component Unit) and more precisely those of the used micro-
controller, sensors and actuators, the communication links (serial links,
networks) and their connections.

• At Technical Architecture level the model of the operating system and/or
Middleware API and the services provided (schedulers, frame packing,
memory management, I/O drivers, diagnosis software, download
software etc.) are given. So programmer's view of the Hardware
Architecture is given by the Technical Architecture.

• The Operational Architecture models the tasks, managed by the
operating systems and frames, managed by the protocols. It is the result
of the mapping of the Logical Architecture entities onto the Technical
Architecture. At this lowest abstraction level, all implementation details
are captured.

A system described at the Functional Analysis level may be loosely
coupled to hardware. Indeed it may be based on intuition, various known
constraints or as a back annotation from more detailed analysis on lower
levels. Furthermore, the structure of the Functional Design architecture and
of the Logical Architecture is aware of the Technical architecture. Finally,
this EAST-ADL provides the consistency within and between artifacts
belonging to the different levels, at a syntactic and semantic point of view.
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This leads to make an EAST-ADL based model a strong and non-ambiguous
support for building automatically models suited to formal validation and
verification activities.

The compliance to UML2 was a constraint for the definition of the
EAST-ADL language. A prototype, based on GME2000 tool 14, was
realized. It provides, at present, an editor for each view previously described
and a checker verifying the consistency of a model, according to EAST-
ADL semantic. A complete model of a system is stored in an XML database.

The description of the language elements was divided into six parts
corresponding to different language domains, as "structure domain" for the
language elements describing the structural relation, or "behavior domain"
for the language elements describing the behavioral models. In the next parts
of the paper we give some information on the "requirement domain" and the
"V&V domain".

3.2 Requirements modeling

As EAST-ADL supports all the activities done along the development
process of an automotive embedded system, it provides a way for expressing
the requirements that guide the building of a solution at each step of this
development. So EAST-ADL defines the different requirements types that
can be used. It allows to link them on the one hand to components defined at
one or several architectural views and on the other hand to analysis models,
design models and implementation models16. Finally the tracing activities
between different requirements or between different versions of
requirements can be expressed in this language.

Five types of requirements were identified. Each of them is characterized
by a textual description possibly completed by a formal description,
information supporting the tracing activities and a status which is to be set to
specific values according to the result of particular design, validation or
verification activities. The requirement types are:
• EFeatures: an EFeature object (EFeature) describes the required

functionalities of an embedded system; this kind of object is used,
mainly, for specifying the system at Vehicle and Functional Analysis
Architecture levels. EFeatures may be decomposed into sub-features or
variant features ("variant" stands here for the various type of equipments
for a car);

• Interactions', this type is used to specify the cooperation modes between
EFeatures through textual description, semi formal one (as use-cases) and
possibly formal one (for example, Message Sequence Charts);

• Functional Requirements', this type aims to specify the behavior of
EFeatures by means of a set of required properties; once more, a formal
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description (state-transition diagrams, Messages Sequence Charts, ...)
can complete the textual one;

• Design Constraints: this is a kind of requirement that constraint the
research field for a solution; for example, such a constraints can impose a
communication standard, a legacy tool for designing the system or a
criteria to optimize (cost, power consumption, network bandwidth, ...);

• Quality Requirements: they are used to express extra-functional
properties; among these Quality Requirements, we can cite performance
properties, reliability properties, safety properties, ...

In this paper, we will focus on the Quality Requirements and on their
links to formal validation and verification activities. For this purpose, we
recall, in the following section, the main classes of validation and
verification techniques that are used in automotive industry and how the
validation and verification process can be modeled.

4. VALIDATION AND VERIFICATION ACTIVITIES

4.1 Main Validation and Verification techniques used in
automotive industry

From an industrial point of view, two main objectives for validation and
verification can be identified:

• Validation and verification of all or parts of a system at a functional level
without taking into account the implementation characteristics. These
activities ensure the consistency of the system mainly with respect to the
EFeatures, Interactions and Functional Requirements. At this level,
simulation or formal analysis techniques can be used;

• Verification of properties of all or part of a system at operational level.
These activities take into account the performances of both the hardware
and Technical Architectures and also the load that is due to a particular
allocation of the Logical Architecture on the Technical Architecture. This
objective can also be reached through simulation and formal analysis
techniques. Note that, in this context the formal approach for the
verification of the feasibility of a set of tasks and frames is done through
a timing analysis method.

For these purposes, a model suited to the concerned techniques and to the
associated tool has to be built. The way used to generate such a model will
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be explained in section 5. Some tools are of course of general interest in this
context as, for example Matlab / Simulink or Stateflow as well as Statemate.
In some cases, an interface encapsulates these tools in order to adapt the tool
to the automotive context.

Moreover, these techniques that work on virtual platforms are completed
by test techniques in order to verify that a realisation is correct. We can cite
the test of software components, the test of logical architectures and the test
of an implemented embedded system. Note that the testing activities as well
as the simulation ones consist in providing a scenario of events and/or data
that stimulate the system under test or stimulate an executable model of the
system; then, in both techniques we have to look which events and/or data
are produced by the system. The input scenario can be manually built or
formally generated. In this last case the test or simulation activity is closely
linked to a formal analysis technique.

4.2 Validation and Verification Process
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SupportedBy 1..*
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Figure 2. Validation and Verification process model
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The EAST ADL language provides a way for supporting the Validation
and Verification activities along the development process.

A main purpose is to formalize the relations between V&V activities and
the other items supported by EAST ADL. These relations are illustrated by
the figure 2. This description is largely inspired by the testing profile defined
in UML2. In this figure, the classes that will be used in the case study are
highlighted (V&V_Activity, System _under_VV, Model, Tool,
Quality Requirement).

In particular, two links should be outlined:

• a first one with Requirement objects: the specified association establishes
that one V&V activity can contribute to the checking of several
requirements, while one requirement can be checked thanks to several
V&V activities;

• a second one with embedded architecture objects: obviously, as the
purpose is to validate or verify properties of all or part of an embedded
system, a V&V Activity object is associated to a set of objects related to
an architecture layer. For example, a timing analysis applied to one
Electronic Control Unit (one micro-controller) is concerned by the set of
tasks (objects TaskOS) that are local to this ECU and by the scheduling
policy used on this ECU and described by an OperatingSystem object.
This set of ADL objects is named System _under_W.

Furthermore, as introduced in the previous section, a V&V activity is a
generic class that can be refined in several subclasses, modelling formal
analysis or scenario-based techniques (simulation or test).

Because the way to conduct V&V activity depends on the techniques,
several entities and associated attributes have been identified. Formal
analysis is mainly based on a formalism, a property to verify and a verdict
concerning the verification of the property. Test (or simulation) is based on a
scenario, acceptable results corresponding to this scenario and a verdict
which is elaborated thanks to actual results of the test (or simulation).
W_Report and Arbiter model the final verdict of a V&V activity.

5. CASE STUDY: PERFORMANCE PROPERTY
VERIFICATION

EAST-ADL supports the consistency between architectural objects,
requirements and validation or verification activities. We illustrate this by
studying how can be applied the schedulability analysis of frames over CAN
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under error pattern assumption. In fact, we show two main characteristics of
EAST-ADL. On the one hand, we identify how EAST-ADL supports the
consistency between requirements specified at different steps of the
development process and the verification activities used to ensure that these
requirements are checked. On the other hand, as for any verification activity
a model of all or part of the system has to be built, we demonstrate how this
building process can be automated by exploiting the semantic of objects and
interactions expressed in EAST-ADL.

Let us consider, as an example, two quality requirements specified during
the development of an embedded system.

• QR1: "the system has to be tolerant to EMI perturbation following a
profile due to a given type of radar"; this requirement can be given in the
earliest steps of the development process.

• QR2: "a freshness constraint (2 milliseconds) is imposed to the signal
<VehicleSpeed>; the average of respected freshness constraint has to be
more than 80%"; this is required at functional level; let us assume that
this signal <VehicleSpeed> is produced by a function and consumed by
another one, so this requirement can be translated in "the percentage of
missed deadlines (2ms.) for the exchange of signal <VehicleSpeed> has
to be less than 20%".

These two requirements impose to the designer the verification of just
one property at operational architecture level: the probability that the frame
containing the signal <VehicleSpeed> misses its deadline (2 ms.) has to be
less than 20% (we suppose here that producer and consumer of
<VehicleSpeed> signal are deployed on two different nodes).

A way to check these two quality requirements for a system is to apply an
analytical method for performance evaluation of the network that supports
the exchange of the concerned signal as illustrated in figure 4. A tool, named
VACANS, is available for this performance evaluation. It is based on a
recurrent algorithm whose principle was given first by Tindell et al.17 and
that was extended for taking into account a more realistic error model by
Navet18 as needed in this verification requirement. It takes as entry, on the
one hand, some characteristics of the CAN network and the specification of
the frames that it supports and, on the other hand, some parameters for
modelling the error occurrences due to a given EMI perturbation pattern.
VACANS evaluates the worst-case deadline failure probability for each
frame. The term worst-case is justified by two assumptions: each error is
detected on the last bit of the frame and the time needed by each frame to
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gain the bus is the maximum possible. More precisions about this technique
can be found in 18

So, for checking the requirements QR1 and QR2, a verification activity
named EMI_Tolerance, can be done by running VACANS tool. The result of
this activity (worst case deadline failure probability for each frame) can then
be analysed and a report that establishes the verdict about the property is
produced. Note that several other results can be obtained as for example, the
percentage of missed deadlines for each other frame, the mean bandwidth of
the network, ... So, we consider in EAST-ADL that all these results
contribute to a general evaluation report which can be linked to several
verification activities, in particular, in this example, to EMI_Tolerance
object.
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Figure 3. How quality requirements QR1 and QR2 are checked through a V&V activity

As shown previously, EMITolerance realised thanks to VACANS tool,
is applied to a set of related objects described in EAST-ADL. We illustrate
in the following how these objects can be "extracted'' from the EAST-ADL
compliant repository.
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Figure 4. From the VehicleSpeed to the object Frame that contains its realization

From functional level (a signal) to operational level (a frame).
The entry point for this extraction is the object ConnectorSignal whose

name is <VehicleSpeed>. This signal, its producer and consumers were
identified at a functional level (see figure 4). In a following step, producer
(<FProducer>) and consumer (<FConsumer>) of the signal were deployed
in OSTasks allocated to different ECUs (Electronic Control Unit). Therefore,
the ConnectorSignal <VehicleSpeed> is transformed in a Signallnstance
object, named <SignalVehicleSpeed>, whose size is 24 bits and is deployed
in an object Frame named <Frame_25>. The object under verification is this
frame.

From one frame at operational level to the network supporting this
frame.

The VACANS tool obliges us to gather all the frames that share the same
network. For this purpose, from the object Frame_25, we obtain the object
network supporting this frame.

From a network to all the frames sharing it
Then, this object, named here CANjChassis, allow us to obtain the set of

frames that we have to take into account for the verification activity (see
figure 5).

Each Frame in EAST-ADL is characterised by several global attributes:
• Period: the trigger period (in ms.); it represents the nominal period for

time triggered frames and the minimum inter-arrival time for event
triggered ones;
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• Offset: (in ms.); it gives the offset from the starting time; this attribute is
only applied for time triggered frames;

• FrameSize: (in bits) the total length of the frame;
• DataSize: (in bits) the sum of the size of each object Signallnstance

deployed in this frame.

These attributes can be extracted automatically from the repository
describing the embedded system in EAST-ADL. Nevertheless, some other
characteristics have to be completed before using VACANS. In particular,
due to the object CANChassis - whose protocol is CAN - we have to
complete the characteristics of each frame by the attribute Priority.
Furthermore, for establishing the verdict, a deadline characteristic is added
to the Frame_25 (2ms. as explicitly given in the requirement QR2); as
nothing is given for the other frames, we consider that their deadlines are
equal to their periods.

The object CAN_Chassis has to be completed by several attributes:
• Throughput: in bits/s;
• Length: in m.

, «Frame» N
Frame 25 t

sentFrames « C A N »
CAN Chassis

Protocol: CAN

sentFrames

sentFrames

Figure 5. From Frame_25 to all the frames sharing the same network

Finally, the use of Vacans requires to fix the parameters used for
specifying the errors occurrences according to a generalized Poisson
Process18. These parameters are <X, u, a> where the inter-arrival between
two perturbations is given by exp(A); the length of a burst is given by the
number of errors u and, when an error occurs, a is the probability that it is a
burst of errors and 1-a is the probability that it is a single error (these
parameters are illustrated in figure 6). The algorithm computes then the
worst-case deadline failure probability for each collected frames.
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Figure 6. Parameters of error distribution

The complexity of the automatic generation of formal model used, in this
case, as an entry of VACANS tool depends on the structure of the XML
database. In the present prototype, the organization of the XML database is
such that it needs for this case study:

to browse a first time the XML file in order to find the object
VehicleSpeed (ConnectorSignal object); the object
SignalVehicleSpeed (Signallnstance object) is directly referenced;
to browse a second time the XML file in order to find, among the
objects Frame, the one that is connected to SignalVehicleSpeed; the
object CANChassis (CAN object) is directly referenced;
to browse a third time the XML file, among the objects Frame, in
order to find all the objects that are connected to CAN_Chassis
object.

This example demonstrates that thanks to the semantic of the objects
described according to EAST-ADL, some activities can be automated and
that formal links connect objects at different levels. So EAST-ADL is not
only a support for the non-ambiguous modeling of an electronic embedded
system but also for its development process.

6. CONCLUSIONS

In this paper we have presented a few concepts of the EAST ADL
common modeling language for automotive software development.
Currently a major version of the language has been defined and used in
demonstrators in the course of EAST-EEA project. This will probably give
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good expertise for language evolutions. The paper has focused on
requirements and V&V aspects through an example at the operational
architecture level. This example shows how some V&V activities can be
automated and that formal links connect objects at different levels. Ongoing
works are on the specification of the needed language attributes for various
V&V methods as timing analysis, or model-checking.

REFERENCES

1 P. Giusto, J.-Y. Brunei, A. Ferrari, E. Fourgeau, L. Lavagno and A. Sangiovanni-
Vincentelli, Automotive Virtual Integration Platforms: Why's, What's, and How's,
Proceedings of the International Conference ofComp. Desc. , July 2002.

2 ITEA - EAST EEA Project, www.east-eea.net/docs.
3 Object Management Group, Model Driven Architecture, http://www.omg.org/mda/
4 R.N. Taylor, N. Medvidovic, A Framework for Classifying and Comparing Architecture

Description Languages, Tech. Report, University of California, Irvine, 1997.
5 S. Vestal, MetaH Reference Manual, Tech. Report, Honeywell Technology Center, 1995.
6 P. H. Feiler, B. Lewis, S. Vestal, The SAE Avionics Architecture Description Language

(AADL) Standard, RTAS 2003, Washington, 2003.
7 B. Berthomieu, PO. Ribet,F.Vernadat, JL. Bernatt, JM. Farines, JP. Bodeveix, M Filali, G.

Padiou,P.lVfichel, P. Farail, P. Gaufillet, P. Dissaux, J.-L. Lambert, Towards the verification
of RT systems in avionics: the Cotre approach, El Notes in Th. Comp. Science 80, 2003.

8. AEE, Architecture Electronique EmbarquSe, http://aee.inria.fr, 1999.
9. J.P. Elloy, F. Simonot-Lion, An Architecture Description Language for In-Vehicle

Embedded System development, 15th IF AC World Congress, Barcelona, Spain, 2002.
10.J. Migge, J.P. Elloy, Embedded electronic architecture, Proceedings of 3rd International

Workshop on Open Systems in Automotive Networks, Bad Homburg, Germany, 2000.
11 R.Kocik, Y. Sorel, A methodology to design and prototype optimized embedded robotic

systems, 2nd IMACS International Multiconference CESA'98, Hammamet, Tunisia, 1998
12 P. Castelpietra, YQ. Song, F. Simonot-Lion, Analysis and simulation methods fir evaluation

of a networked embedded architecture, IEEE Trans, on Industrial Electronics, 49-6, 2002.
13 Durand E., Description et verification d'architectures d'application temps r6el: CLARA et

les r6seaux de Petri Temporels. PhD thesis, Ecole Cdentrale de Nantes, 1998 (report in
French).

14 A. Ledeczi, M. Maroti, A. Bakay, G. Nordstrom, J. Garrett, C. Thomason, J. Sprinkle, P.
Volgyesi, GME 2000 Users Manual (v2.0), technical report, Vanderbilt University, 2001.

15 U. Freund, O. Gurrieri, J. Kiister, H. Lonn, J. Migge, M.-O. Reiser, T. Wierczoch and M.
Weber, An Architecture Description Language for Developing Automotive ECU-
Software, INCOSE 2004, International Conference On Systems Engineering,
Toulouse, France, June 2004.

16 M.Weber, J.Weisbrod, Requirements Engineering in Automotive Development -
Experiences and Challenges. IEEE Software, vol. 20, no. 1, pp 16-24, 2003.

17 K. Tindell and A. Burns, Guaranteeeing message latencies on Controller Area network
(CAN), 1st International CAN Conference, ICC'94.

18 N. Navet, Y.-Q. Song, F. Simonot, Worst-case deadline failure probability in real time
applications distributed over CAN, in Journal of System Architecture, 46(7), 607-618.



Architecture Description Languages 197

BUILDING TOOL SUITE FOR AADL

Jean-Frangois Tilman
Axlog ingenierie
19-21 rue du 8 mai 1945
94110 Arcueil, France
(+33) 1 41 24 31 33
Jean-Francois.Tilman@axlog.fr

Abstract Architecture description languages (ADLs) are more and more considered in
system engineering to model real-time applications (avionics, transportation,
critical industrial systems, etc.). They provide means to formally specify ar-
chitectures and support their design from the capture of the needs to the final
validation. ASSERT, a european integrated project (IP) tackling improvement
of system engineering process, is an illustration of this consideration.

Among all the existing ADLs, a few must be attentively considered because
they should spread in the future. This is the case for AADL, an ADL initially
dedicated to avionics applications, and now designed to support any domain
critical application.

AADL may play a great role in industry to improve software and system
development process. To achieve this objective, we need to strongly combine
the description capabilities of AADL with tool suites used to develop, generate
or test the system. This means that such tool suites have to explicitely support
AADL.

AADL is based on MetaH, which is both an ADL and a tool set supporting
it. In this paper, we will consider how an equivalent AADL tool suite could
be built, possibly based on MetaH tools. We will also consider the industrial
domains where it could be adopted and the role it could play.

1. Introduction

Architecture description languages (ADLs) are more and more popular in
industry. After their development and use in laboratories, a lot of research
is currently led by industry to transfer and integrate them into actual system
engineering process. ADLs provide a means to formally describe system ar-
chitectures. Many activities require such descriptions, and the introduction of
such a formalism can help in their improvement.
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The use of a description language in an industrial process requires its full
support by the tools involved in this process. If not so, this language will not
be adopted by users because its manipulation is unpracticable. Among all the
existing ADLs, a few have the vocation to cover large parts of the industry
needs. AADL [aadl] is one of them. For this ADL also, the support by tools is
an issue to be considered.

In this article we will first consider the possible roles of ADLs in system en-
gineering process and we will compare approaches of several domains, mainly
automotive and avionics. Secondly, we will talk about the tool aspect of this
subject: why is it important to support an ADL with tools, what are the existing
bases to build such tools for AADL, what can these tools look like.

2. Interest of ADLs

Role
When developing computer-based systems, we must avoid inconsistencies

in each phase of the development: the capture of the needs must be complete
and consistent, the specification must cover all the needs, the design must fulfil
the specifications, and so on, until the last phases of the development cycle and
the validation.

What is difficult here is to ensure that (1) each piece of information in a
given phase is completely taken into account in the next phase during the re-
finement and (2) that the contents of each phase are consistent. This problem
deals with the management of information. It is more accurate during the first
phases, typically where we often use natural languages to describe the needs
and the specifications.

The best way to solve this problem is to use formalism, and particularly use a
formal means to describe the system architecture and the related requirements.
This is the role of architecture description languages (ADLs).

"ADL" is a very generic acronym, and many ADLs exist to describe ar-
chitectures of various domains : mechanics, electronics, software, etc. We
will only consider those dealing with computer-based systems, that is, systems
containing computers embedding software. Among them, some are specialized
for a particular application domain (avionics, automotive, etc.), or for partic-
ular aspects (synchronous approach, distribution problems). For our purpose,
we are interested by ADLs supporting the whole system, not only a subset, and
during all the development cycle.

Avionics domain

Avionics is a domain where industry has early considered the possible in-
terest of formal descriptions in development process. These considerations are
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motivated by the high quality level required in this domain. The following
examples show activity of avionics industry in these questions.

In 1990, MetaH [metah] has been initiated by Amcom (US army) and Hon-
eywell. MetaH is both an architecture description language and a tool set. It
enables the description of avionics software architectures in a bottom-up ap-
proach and the automatic generation of what is needed to agregate the user
components and execute them in a given target.

MetaH has demonstrated the interest of this technique in terms of cost and
duration of developments. Some operations like retargeting a source code for
a new hardware can be significantly improved (up to 70 %). However MetaH
has never been largely deployed in industry.

In 2000, Amcom and Honeywell decided to create an international standard
for an architecture description language based on MetaH. This new language
is AADL (originally meaning Avionics Architecture Description Language),
and its standardization process is led under the authority of the Society of Au-
tomotive Engineers (SAE), aerospace division. The standardization committee
includes American and European partners, many of them come from avionics
industry. Now, AADL is no more specific for avionics and the meaning of its
acronym has changed into "Architecture Analysis and Design Language" to
avoid confusion.

In Europe, the ASSERT project is considering the same problems, but is
more innovative and ambitious. Using a common architecture description lan-
guage for the whole development cycle, it aims at improving the engineer-
ing process by using formal methods and proofs, and go towards the proof-
based system engineering (PBSE). ASSERT is an integrated project (IP) for
the 6th framework program for research and develoment of the European com-
mission. Many of the large avionics and space European compagnies are in-
volved in this project, like other ones coming from other industrial domains.
At the end of this project, the results will have been applied and validated on
real industrial systems.

Automotive domain

The car industry has the same considerations as the avionics one. They
also have projects based on architecture description language approaches. The
French AEE project [aee] has defined some specifications of what is useful
for the automotive industry. In particular it has designed a specialised ADL,
AIL-transport [ES2002], which is more dedicated to this domaine.

Unlike more generic ADLs, AIL-transport details many categories of au-
tomotive components. So this ADL is strongly linked with the automotive
architecture and cannot be adapted to other purposes. This choice may be ex-
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plained by the fact that the development process of a car is shorter than the one
of an aircraft.

AIL-transport and the results of this project are internally used by some ot its
automotive partners. However, the lack of tools supporting them is a weakness
and stresses the need for tools to promote new system engineering practices.

The European project EAST-EEA [east] is in a certain way the follow up of
the AEE project. It demonstrates the interest of the automotive industry, at the
European scale, for the formal description of architectures and the ADLs.

AADL emergence
Among all the ADLs, AADL is currently emerging and could play a major

role in industry in the future. This is illustrated by projects like ASSERT, which
has chosen this language to support its system development lifecycle. Several
explanations can be advanced:

• AADL is generic enough to cover all the real-time systems, in any do-
main;

• AADL is currently standardized by an international committee, what
favours its adoption by a large community of users and its support by
tool vendors;

• AADL is based on MetaH, which has experimented and validated for ten
years the underlying concepts;

• a graphical version of AADL, based on UML 2, is currently under spec-
ification.

As seen previously, some other domains such as automotive have chosen
more dedicated ADLs. It should be possible to map the concepts of these spe-
cial ADLs on those of AADL. Such an approach could combine the advantages
of AADL with specificities of a given domain. This idea is worth studying.

3. Tool support for AADL

Needs

Whatever the quality of a method is, it will not be adopted by users if it is
not supported by tools. This is especially the case for development methods
in industrial domains, where training and process constraints are important. It
is not thinkable to ask the users to write by hand formal descriptions of their
systems, and manually translate them into other formats to communicate with
their development tools.

This is also the case for AADL. This language provides a strong structure
and a well-defined semantics for the description of system architectures. It is
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possible to build a good development process with it. But all this will only be
done if tools help the users during the development. At the same time, tools
will also ensure the correct use of AADL by avoiding mistakes, syntax errors
and so on.

Existing basis to build a tool suite
A tool suite supporting AADL does not need to be developed from scratch.

Indeed, many tools exist and can be used as a basis to lead such development.
Even if some of these tools can not be easily adapted, they demonstrate the
feasibility of these concepts.

MetaH. As said before, MetaH is both an architecture description language
and a toolset supporting it. The language has been used as a basis to define the
AADL standard. Even if differences between them are sometimes important
(MetaH has more restrictions for multi-processor systems, scheduling policies,
etc.), the common part is large and ensures a strong basis for AADL. When
considering the development of tools supporting the new AADL standard, it is
natural to imagine the reuse of some MetaH tool technologies.

MetaH provides a graphical user interface called Dome. This interface en-
ables the design of the architecture and its properties, and the generation of
the description file. Dome has meta facilities which enable its easy adapta-
tion to support the new AADL concepts. Moreover Dome has not the same
restrictions as MetaH for exportation.

MetaH also contains some verification tools for architectures described in
MetaH ADL. For example, it is possible to check the schedulability of the
real-time tasks. It seems interesting to reuse such a tool with AADL. The
schedulability problem is relatively simple with MetaH because the schedul-
ing policy is imposed and all the related theories exist. AADL allows many
different scheduling or communication policies. The theories that we need to
prove the schedulability of a whole architecture are now more complex, when
existing, and the reuse of the MetaH tools is perhaps not so easy.

The MetaH toolset contains code generators. This is due to its general prin-
ciple, where the user components are agregated and linked by the generated
code. In this approach, many constraints can be imposed to the user, since the
expected result is the production of some embedded software. The principle
of AADL is more a descriptive approach, that is, the capability to describe a
possibly already existing system. In this case it is not possible to impose many
technical solutions to the user. The MetaH code generator may be reused with
AADL but it needs to be adapted to the new context and become more flexible.

Thus, MetaH can be used as a basis for several tools supporting AADL, but
adaptations will be required in all the cases because of the differences between
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these two languages. The main risk is related to the current export restrictions
imposed to MetaH by the US government.

ADeS. ADeS [ades] is a simulator of the behaviour of system architectures
described with AADL. We developed it during a study with the European space
agency (ES A) to evaluate the first draft versions of the AADL standard and to
test the capability of this language to be supported by tools.

ADeS can be used during the development of an architecture to assess its
behaviour. At each step of the lifecycle, the AADL description of the archi-
tecture is refined. ADeS parses this description and simulates the behaviour
of all the components to show the global behaviour of the architecture. The
accuracy of the result will depend on the accuracy of the description. On the
one hand, during the first phases of the development we just get an overview
of the global behaviour. On the other hand, at the end of the development, it
is possible to plug user models in the simulator to have precise results. This
capability of ADeS to accept user behaviour models is used to bypass current
limitations of AADL in the description of architecture behaviours. We expect
improvements of this point in the future.

Other tools can be used for similar simulation purposes (e.g., ObjectGeode [ob-
jectgeode], Matlab/Simulink [simulink], Scilab [scilab]). What is different
with ADeS is the will to share a common architecture description language
as a support for the whole information related to the manipulated architecture,
including the simulation needs, and not to use a specific language for simu-
lation aspects or particular subsystems. However, we have succeeded in the
connection of ObjectGeode and Scilab with ADeS to take advantage of their
specific capabilities.

However, ADeS can provide several interesting modules for the develop-
ment of an AADL tool suite. Firstly, ADeS contains a full AADL parser, able
to understand AADL descriptions, to provide a data structure representing the
architecture in memory, to detect the syntactic and semantic errors, and to send
an explicit error message to the user. This parser needs to be updated to take
into account the last evolutions of the standard, but it is already very close
to the AADL specification. As foreseen for the ASSERT project, this AADL
parser can also be used to experiment changes in AADL to support additional
informations.

Secondly, ADeS provides a graphical user interface (see figure 1) to visu-
alize the structure of the system architecture, and not only the structure of the
description. In other words, it recursively shows contents of all the component
instances, whereas many common modelling tools show more the component
types (or classes).

Lastly, ADeS has a simulation kernel where simulation elements are created
to represent the system architecture elements. The simulation provides a good
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x-«

Figure 1. Snapshot of the man-machine interface of ADeS

means to evaluate the behaviour of the system under development. This tool
can be extended to support many specific needs of the user.

A possible extension of ADeS is the addition of a capability to modify the
manipulated AADL descriptions in order to easily prototype, dimension and
assess solutions, and then reexport these changes into the AADL description.

Possible services

Many services can be provided by a tool suite based on AADL, in sev-
eral categories: modelling tools, verification, automatic generation, etc. These
tools will share some common functions, such as the AADL parser. Figure 2
shows a possible organization of an AADL tool suite. Let us consider these
possible tools.

AADL manipulation. AADL parsing is the first action for any tool using
an AADL description as input. Thus, AADL parser is a typical example of a
module which can be shared by all the tools supporting AADL.
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AADL
[description

AADL parser

AADL generator I

import/export

modelling tools I

automatic generation

verification tools j
simulation

Figure 2. Possible organization of an tool suite supporting AADL

The first objective of an AADL parser is to read the AADL descriptions
and to build in memory a data structure which will be manipulated by tools.
Such a parser can be applied on textual AADL descriptions or their equivalent
XML format, but also on XMI format when using graphical AADL descrip-
tions based on UML. Depending on the context of its use, it can provide several
other services:

• Detection of all the syntax and semantics errors. This is useful when
the description is written by hand or by a tool which does not correctly
manage all the semantics rules of AADL;

• Creation of error messages explaining the detected errors. This is useful
when using the textual AADL format in a description written by hand.

Another similar module can be shared: the AADL generator. This module
is able to produce an AADL description from a memory representation of the
architecture. Of course, these two modules have to work together to share the
same memory representation. They constitute a single software library for the
tool developer.

Modelling. Many modelling tools exist and are used for system and soft-
ware development. Some of them are based on UML [uml], others on HOOD
[hood], other on different standards. They enable the description of an archi-
tecture by combining elements and assembling them. Introducing AADL in the
system development process strongly requires such modelling tools. This re-
quirement can be fulfilled either by specific tools developed to support AADL,
or by existing ones where some import/export functions are added to read and
write AADL descriptions. A graphical version of AADL is currently under
definition. This graphical AADL is based on UML 2. This choice will help in
the reuse of existing UML modelling tools in this context.

Just using existing modelling concepts is not enough to take completely
advantage of AADL. The first AADL descriptions of a system under devel-
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opment can happen in the very early stages of a project, for example during
the capture of the needs. And the classical modelling tools are not able to
take these aspects into account. Some tools exist to support requirement engi-
neering (Doors [doors], Catalyse [catalyze]) and could also be interfaced with
AADL. Innovative methods also exist to deal with this problem with formal
approaches and proofs of consistency. For example, TRDF [GLL1996] defines
how to rigorously lead the first phases of the development to capture all the re-
quirements and to produce complete and consistent specifications. Since these
methods are not yet supported by tools, new ones have to be invented. They
will enable the production of AADL description during the application of these
methods.

Examples of possible tools are given below:

Requirement capture this tool will help in the capture of the need of the
client and its formal expression in the highest levels of an AADL de-
scription;

System design and validation this tool can help in the description of the spe-
cifications of the system and the reuse of already existing building blocks
with formal verification of their compatibility with the architecture;

Feasibility and dimensioning this tool will ensure that the already described
architecture is feasible, and will complete the description by giving val-
ues for the pending properties.

Generation. During a development process, many parts can be automati-
cally generated instead of being fastidiously hand coded. This is the case for
the source code itself. This function is now well masterised by tool vendors
and is often associated with modelling tools.

Automatic test generation is also possible in this context. Some of these tests
are based on the low-level aspects of the develoment. Unitary tests are related
to the source code and the detailed design results. A lot of research is led to
better cover this activity [inka, danocops, agatha]. By choosing a single formal
description language for the whole development cycle, we enable the use of
this language to contain what is needed to generate these tests. Moreover, in
such a description we also have a lot of information to generate higher level
tests for integration phases.

Verification, Since we use a formal means to describe the system archi-
tecture under development, many formal verifications can be processed. For
example, it is possible to prove real-time properties: Is it possible to always
execute the tasks and meet their deadlines? Is it possible to communicate all
the data through the connections? Such verifications will take place after a
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detailed design phase because they need precise information about the organi-
zation of the system and its parameters.

Another type of verification can be performed during the first phases of
the development (capture of the needs, specifications, design). Any of these
phases will produce and refine the AADL description of the system architec-
ture. Provided that the development method keeps all the needed information
in the description, it is possible to check by tools whether the architecture re-
sulting of each phase is consistent. It is also possible to check whether all the
requirements resulting from a given phase are taken into account in the next
one.

Simulation. Verifications can also be performed by simulation of the exe-
cution of the system architecture under development. If we have all the inter-
esting information in the description, it is possible to simulate the behaviour
of each element and get a good evaluation of the global system. As presented
previously, ADeS is an example of such a tool and illustrates the capability of
AADL to provided the needed information to perform such a simulation.

The simulation can also provide an evaluation of the behaviour of the archi-
tecture during each step of its development. This is useful for a rapid prototyp-
ing of the system during its specifications or at the beginning of its design. As
the design is refined, the simulation can be used to evaluate its consequences
on the behaviour of the system.

4. Conclusion

We have seen that ADLs are more and more considered, and particularly in
avionics and automotive domains. Among these ADLs, AADL seems to be an
interesting one, and the development of a tool suite supporting this language
is now necessary to promote it and enable its easy use by industry. Bases
exist to ensure the feasibility of these tools and to build them by reusing some
components.

Tools supporting AADL can provide services in several categories: A set
of parsers and AADL generators can help in the manipulation of the language,
modelling tools can help in the creation of architecture descriptions and pro-
vide support for innovative formal design methods, automatic code and test
generators can take advantage of the information contained in the description,
verification tools can check the consistency and completeness of the designed
architecture, simulation tools can give an assessment of the behaviour of the
system architecture during its development.

Since the use of AADL in system engineering may be very large, a complete
tool set must be composed by many more or less independant tools, developed
or adapted by their own specialists. The difference with the current situation
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will be the interoperability capabilities, thanks to the international standardiza-
tion of AADL which enables these tools to share the same language.

The development of innovative tools and methods in relation with research
projects, like ASSERT, will provide improvements for AADL. The standariza-
tion committee has already planned a new version of the standard to take into
account these inputs.
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